高考狀元備考經驗談數學導數中檔題是拿分點
2013-11-13 09:27
來源:高考頻道整理
作者:
高考數學搶分點:導數中檔題是拿分點
1.單調性問題
研究函數的單調性問題是導數的一個主要應用,解決單調性、參數的範圍等問題,需要解導函數不等式,這類問題常常涉及解含參數的不等式或含參數的不等式的恆成立、能成立、恰成立的求解。由於函數的表達式常常含有參數,所以在研究函數的單調性時要注意對參數的分類討論和函數的定義域。
2.極值問題
求函數y=f(x)的極值時,要特別注意f『(x0)=0隻是函數在x=x0有極值的必要條件,只有當f『(x0)=0且在xx0 時,f『(x0)異號,才是函數y=f(x)有極值的充要條件,此外,當函數在x=x0處沒有導數時, 在 x=x0處也可能有極值,例如函數 f(x)=|x|在x=0時沒有導數,但是,在x=0處,函數f(x)=|x|有極小值。
還要注意的是, 函數在x=x0有極值,必須是x=x0是方程f『(x)=0的根,但不是二重根(或2k重根),此外,在確定極值點時,要注意,由f『(x)=0所求的駐點是否在函數的定義域內。
3.切線問題
曲線y=f(x)在x=x0處的切線方程為y-f(x0)=f『(x0)(x-x0),切線與曲線的綜合,可以出現多種變化,在解題時,要抓住切線方程的建立,切線與曲線的位置關係展開推理,發展理性思維。關於切線方程問題有下列幾點要注意:
(1)求切線方程時,要注意直線在某點相切還是切線過某點,因此在求切線方程時,除明確指出某點是切點之外,一定要設出切點,再求切線方程;
(2) 和曲線只有一個公共點的直線不一定是切線,反之,切線不一定和曲線只有一個公共點,因此,切線不一定在曲線的同側,也可能有的切線穿過曲線;
(3) 兩條曲線的公切線有兩種可能,一種是有公共切點,這類公切線的特點是在切點的函數值相等,導數值相等;另一種是沒有公共切點,這類公切線的特點是分別求出兩條曲線的各自切線,這兩條切線重合。
4.函數零點問題
函數的零點即曲線與x軸的交點,零點的個數常常與函數的單調性與極值有關,解題時要用圖像幫助思考,研究函數的極值點相對於x軸的位置,和函數的單調性。
5.不等式的證明問題
證明不等式f(x)≥g(x)在區間D上成立,等價於函數f(x)-g(x)在區間D上的最小值等於零;而證明不等式f(x)>;g(x) 在區間D上成立,等價於函數f(x)-g(x)在區間D上的最小值大於零,或者證明f(x)min≥g(x)max、 f(x)min>;g(x)max.因此不等式的證明問題可以轉化為用導數求函數的極值或最大(小)值問題。
編輯:張健
【山東初高中學生專屬】
山東高考近五年真題,高考複習資料,初中期末試卷,更多資料
掃碼即可獲取
6月13-7月5日
2020中高考主題活動陪伴考生備考、擇校
掃碼或微信打開連結長按關注二維碼
立即獲取
掃碼獲取2020年河南高考志願填報講座入場券
掃碼添加新東方廣州學校老師
發送「2020高考」
獲取更多資訊
成都學校二維碼展示
長沙學校二維碼展示
2020湖北高考解析直播
長按識別掃碼 進入直播群
交流高考心得,獲取更多內容
名稱名稱
微信掃碼關注"新東方網"服務號
回復""立刻獲取!
版權及免責聲明
① 凡本網註明"稿件來源:新東方"的所有文字、圖片和音視頻稿件,版權均屬新東方教育科技集團(含本網和新東方網) 所有,任何媒體、網站或個人未經本網協議授權不得轉載、連結、轉貼或以其他任何方式複製、發表。已經本網協議授權的媒體、網站,在下載使用時必須註明"稿件來源:新東方",違者本網將依法追究法律責任。
② 本網未註明"稿件來源:新東方"的文/圖等稿件均為轉載稿,本網轉載僅基於傳遞更多信息之目的,並不意味著贊同轉載稿的觀點或證實其內容的真實性。如其他媒體、網站或個人從本網下載使用,必須保留本網註明的"稿件來源",並自負版權等法律責任。如擅自篡改為"稿件來源:新東方",本網將依法追究法律責任。
③ 如本網轉載稿涉及版權等問題,請作者見稿後在兩周內速來電與新東方網聯繫,電話:010-60908555。