-
x^2+y^2=2,求x+y和xy的最值
解:先求x+y的最值問題。思路一:設x+y=k,代入已知方程,得到關於x的一元二次方程,方程有實數根,則有判別式≥0,求得k的取值範圍。當(sint+π/4)=1時,x+y有最大值=2;當(sint+π/4)=-1時,x+y有最小值=-2; 思路三:不等式法∵x^2+y^2≥[(x+y)^2]/2∴(x+y)^2≤2(x^2+y^2)即:(x+y)^2≤4,則:-2≤x+y≤2.
-
已知x>0,求1+(x^2+1)/x的最小值
主要內容:本文通過不等式法、三角函數代換法和函數導數法,介紹代數式1+(x^2+1)/x的最小值求解的具體步驟。不等式法:∵1+(x^2+1)/x=1+x+1/x,又因為x為正數,∴1+(x^2+1)/x≥1+2√(x*1/x)=3。即代數式的最小值等於3。
-
已知x2+y2=1,求(x-y)2的最大值
主要內容:已知x2+y2=1,介紹通過等式變換、三角換元、判別式法、中值替換等方法求(x-y)2的最大值的步驟。本文用到的主要公式:1.(sint)2+(cost)2=1。2.正數a,b有不等式:a2+b2≥2ab。3.(a±b)2=a2±2ab+b2。
-
已知2/x+1/y=1,求x+y的最大值的四種方法
方法一:「1」的代換x+y=(x+y)(2/x+1/y)=(2+1+x/y+2y/x)利用均值不等式,則有:x+y≥(2+1+2√2)。方法二:柯西不等式法∵(2/x+1/y)(x+y)≥(√2+√1)^2∴(x+y)≥(√2+√1)^2即:x+y≥(√2+1)^2。
-
已知x^2-y^2=xy,求(x+y)/(x-y)
思路一:正比例替換設y=kx,代入已知條件得:x^2-(kx)^2=x*kx,(1-k^2)x^2=kx^2,1-k^2=k,則:k^2+k-1=0,由求根根式得:k=(-1±√5)/2;代數式=(x+kx)/(x-kx)=(1+k)/(1-k)=2±√5。
-
已知x^2-y^2=xy,求(x+y)/(x-y)的值
思路一:正比例替換設y=kx,代入已知條件得:x^2-(kx)^2=x*kx,(1-k^2)x^2=kx^2,1-k^2=k,則:k^2+k-1=0,由求根根式得:k=(-1±√5)/2;代數式= 思路二:二次方程求根公式法x^2-y^2=xy,y^2+xy-x^2=0,將方程看成y的二次方程,由求根公式得
-
已知x^3+y^3=1,求x+y的最大值
主要內容:通過二次函數判別式、不等式法、中值替換、多元函數最值法等不同方法,介紹所求代數式x+y在給定條件x^3+y^3=1下最大值的計算步驟。3.y=x^(1/3),則其導數y』=(1/3)x^(-2/3)。
-
計算與化簡:√(x/y+y/x+2)-√(x/y)-√(y/x)(x>0)
題目計算與化簡:(5)√(x/y+y/x+2)-√(x/y)-√(y/x)(x>0)普通學生思路:因為x/y=[√(x/y)]^2;y/x=[√(y/x)]^2;2=2×√(x/y)·√(y/x);所以x/y+y/x+2
-
求函數y=(x+1)(x+11)的導數y',y'',y'''
主要內容:通過函數乘積的求導公式,以及函數和的求導公式求函數y=(x+1)(x+11)的一階、二階和三階導數。一、一階導數:函數乘積求導法。∵y=(x+1)(x+11),∴y'=(x+11)+(x+1),=x+11+x+1=2x+12;函數和求導法。
-
求y=√(x^2+1)+√(x-1)^2+1的最小值及x值
主要內容:通過兩點間直線距離最短以及函數的導數,介紹求解根式和y=√(x^2+1)+√[(x-1)^2+1]最小值的步驟。方法一:兩點間直線距離最短根據題意,設A(0,1),B(1,1),C(x,0),則A,C兩點的距離為:|AC|=√[(0-x)^2+(1-0)^2=√(x^2+1);同理,B,C兩點的距離為:
-
z=f(x^2-y^2,ln(x-y))求z對x,y的
主要內容:本文介紹全微分法和直接法,求解抽象函數z=f(x^2-y^2,ln(x-y)對x,y的一階偏導數dz/dx和dz/dy的具體步驟和過程。全微分法:對函數z求全微分得:dz=f1'(2xdx-2ydy)+f2'(1dx-1dy)/(x-y),即:dz=[2xf1'+f2』/(x-y)]dx-[2yf1'+f2』/(x-y)dy,根據全微分與偏導數的關係,得:dz/dx=2xf1'+f2』/(x-y),dz/dy=-[2yf1'+f2』/(
-
x^2/3+y^2/2+z^2/2=1,求x+y+z的取值範圍
主要內容:通過柯西不等式、換元法及構造多元函數法,介紹x+y+z在滿足給定條件x^2/3+y^2/2+z^2/2=1下的取值範圍。 主要公式:1.柯西不等式:(a^2+b^2)(c^2+d^2)≥(ac+bd)^2.2.sin(a+b)=sinacosb+cosasinb.
-
初中數學:若x-y=2,且x>0,y<0,怎麼求x+y的取值範圍?一元一次不等式
一元一次不等式(組)是初中數學的一個重要考點,特別是含參數不等式(組)更是一個難點。
-
z=f(x^2-y^2,ln(x-y))求z對x,y的偏導數
主要內容:本文介紹全微分法和直接法,求解抽象函數z=f(x^2-y^2,ln(x-y)對x,y的一階偏導數dz/dx和dz/dy的具體步驟和過程。全微分法:對函數z求全微分得:dz=f1'(2xdx-2ydy)+f2'(1dx-1dy)/(x-y),即:dz=[2xf1'+f2』/(x-y)]dx-[2yf1'+f2』/(x-y)dy,根據全微分與偏導數的關係,得:dz/dx=2xf1'+f2』/(x-y),dz/dy=-[2yf1'+f2』/(
-
函數y=(2x+1)(x+1)^2的導數y',y'',y'''
主要內容:通過函數乘積的求導公式,以及函數和的求導公式求函數y=(2x+1)(x+1)^2的一階、二階和三階導數。一、一階導數:函數乘積求導法。∵y=(2x+1)(x+1)^2,∴y'=2(x+1)^2+(2x+1)*2*(x+1),=(x+1)(2x+2+4x+2),=(x+1)(6x+4)=6x^2+10x+4;
-
當x=1時,計算y=x^2+x+1的增量和微分
主要內容:本文介紹二次函數y=x^2+x+1在x=1時,自變量增量△x分別在1、0.1、0.01情形下增量和微分得計算步驟。主要步驟方法:y=x^2+x+1,方程兩邊同時求微分,得:dy=(2x+1)dx,此時函數的增量△y為:△y=(x+△x)^2+(x+△x)+1-(x^2+x+1),即:△y=(2x+1)△x+(△x)^2.對於本題已知x=1,則:dy=3dx,△y=3△x+(△x)^2。
-
求y=x+√(1-x)在區間「-1,1」上的最值的方法
主要內容:分別介紹用換元法、導數法和平方法計算y=x+√(1-x)在區間[-1,1]上最大最小值的思路和步驟。 用到的公式:1.y=cx,則y&39;=-b/2√(a-bx)。其中a,b為常數,b≠0。3.二次函數的判別式公式。
-
八年級數學:已知x+y與xy,如何求x與y的n次方和?
一個題如果有好幾問,後面的問題往往需要用到前面的結論,故現在已知條件拓展了,除了知道x+y=2,xy=1,又增加了一個已知條件x^2+y^2=2.再仔細觀察上式,如果把等號右邊的x和y換成x^2和y^2,左邊就變成了x^4+y^4!,同樣的方法還可以求出x^8+y^8.那我們不妨先把(3)和(7)做出來。
-
x和y是選自前200個自然數的兩個不同的數,且x>y,①求(x+y) - 刀神...
題目x和y是選自前200個自然數的兩個不同的數,且x>y,①求(x+y)/(x-y)的最大值;②求(x+y)/(x-y)的最小值。(小學)普通學生思路:①求最大值,分子要儘可能大,分母要儘可能小,由於兩個不同自然數的差最小是1,此時取得x=200,y=199,即200-199=1。所以分母是1,分子是200+199=399,即(x+y)/(x-y)的最大值是399/1=399÷1=399。
-
高中:給出x,y的不等式求x+y的值?關鍵在於如何構建函數
原題原題:已知實數x,y滿足3x-y≤ln(x+2y-3)+ln(2x-3y+5),則x+y=?令x+2y-3=m,2x-3y+5=n,m>0,n>0,則x=(3m+2n-1)/7,y=(2m-n+11)/7,3x-y=m+n-2,x+y=(5m+n+10)/7。