2018中考數學一次、二次函數性質必考總結...初中複習不容錯過!

2021-03-01 哈考網初中

   "哈爾濱中考"       必勝!

 

函數是中考數學的基礎,又是重難點,這塊內容同學們務必掌握。

  一次函數  

一、定義與定義式:

自變量x和因變量y有如下關係:

y=kx+b

則此時稱y是x的一次函數。

特別地,當b=0時,y是x的正比例函數。

即:y=kx (k為常數,k≠0)

二、一次函數的性質:

1.y的變化值與對應的x的變化值成正比例,比值為k

即:y=kx+b (k為任意不為零的實數 b取任何實數)

2.當x=0時,b為函數在y軸上的截距。

三、一次函數的圖像及性質:

1.作法與圖形:通過如下3個步驟

(1)列表;

(2)描點;

(3)連線,可以作出一次函數的圖像——一條直線。因此,作一次函數的圖像只需知道2點,並連成直線即可。(通常找函數圖像與x軸和y軸的交點)

2.性質:(1)在一次函數上的任意一點P(x,y),都滿足等式:y=kx+b。(2)一次函數與y軸交點的坐標總是(0,b),與x軸總是交於(-b/k,0)正比例函數的圖像總是過原點。

3.k,b與函數圖像所在象限:

當k>0時,直線必通過一、三象限,y隨x的增大而增大;

當k<0時,直線必通過二、四象限,y隨x的增大而減小。

當b>0時,直線必通過一、二象限;

當b=0時,直線通過原點

當b<0時,直線必通過三、四象限。

特別地,當b=O時,直線通過原點O(0,0)表示的是正比例函數的圖像。

這時,當k>0時,直線只通過一、三象限;當k<0時,直線只通過二、四象限。

四、確定一次函數的表達式:

已知點A(x1,y1);B(x2,y2),請確定過點A、B的一次函數的表達式。

(1)設一次函數的表達式(也叫解析式)為y=kx+b。

(2)因為在一次函數上的任意一點P(x,y),都滿足等式y=kx+b。所以可以列出2個方程:y1=kx1+b …… ① 和y2=kx2+b …… ②

(3)解這個二元一次方程,得到k,b的值。

(4)最後得到一次函數的表達式。

五、一次函數在生活中的應用:

1.當時間t一定,距離s是速度v的一次函數。s=vt。

2.當水池抽水速度f一定,水池中水量g是抽水時間t的一次函數。設水池中原有水量S。g=S-ft。

六、常用公式:(不全,留言補充哦~)

1.求函數圖像的k值:(y1-y2)/(x1-x2)

2.求與x軸平行線段的中點:|x1-x2|/2

3.求與y軸平行線段的中點:|y1-y2|/2

4.求任意線段的長:√(x1-x2)^2+(y1-y2)^2 (註:根號下(x1-x2)與(y1-y2)的平方和)

  二次函數  

一、定義與定義表達式

一般地,自變量x和因變量y之間存在如下關係:

y=ax^2+bx+c

(a,b,c為常數,a≠0,且a決定函數的開口方向,a>0時,開口方向向上,a<0時,開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大.)

則稱y為x的二次函數。

二次函數表達式的右邊通常為二次三項式。

二、二次函數的三種表達式

一般式:y=ax^2+bx+c(a,b,c為常數,a≠0)

頂點式:y=a(x-h)^2+k [拋物線的頂點P(h,k)]

交點式:y=a(x-x?)(x-x ?) [僅限於與x軸有交點A(x? ,0)和 B(x?,0)的拋物線]

註:在3種形式的互相轉化中,有如下關係:

h=-b/2ak=(4ac-b^2)/4a x?,x?=(-b±√b^2-4ac)/2a

三、二次函數的圖像

在平面直角坐標系中作出二次函數y=x^2的圖像,

可以看出,二次函數的圖像是一條拋物線。

四、拋物線的性質

1.拋物線是軸對稱圖形。對稱軸為直線

x= -b/2a。

對稱軸與拋物線唯一的交點為拋物線的頂點P。

特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)

2.拋物線有一個頂點P,坐標為

P( -b/2a ,(4ac-b^2)/4a )

當-b/2a=0時,P在y軸上;當Δ= b^2-4ac=0時,P在x軸上。

3.二次項係數a決定拋物線的開口方向和大小。

當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。

|a|越大,則拋物線的開口越小。

4.一次項係數b和二次項係數a共同決定對稱軸的位置。

當a與b同號時(即ab>0),對稱軸在y軸左;

當a與b異號時(即ab<0),對稱軸在y軸右。

5.常數項c決定拋物線與y軸交點。

拋物線與y軸交於(0,c)

6.拋物線與x軸交點個數

Δ= b^2-4ac>0時,拋物線與x軸有2個交點。

Δ= b^2-4ac=0時,拋物線與x軸有1個交點。

Δ= b^2-4ac<0時,拋物線與x軸沒有交點。X的取值是虛數(x= -b±√b^2-4ac 的值的相反數,乘上虛數i,整個式子除以2a)

五、二次函數與一元二次方程

特別地,二次函數(以下稱函數)y=ax^2+bx+c,

當y=0時,二次函數為關於x的一元二次方程(以下稱方程),

即ax^2+bx+c=0

此時,函數圖像與x軸有無交點即方程有無實數根。

函數與x軸交點的橫坐標即為方程的根。

1.二次函數y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同,它們的頂點坐標及對稱軸如下表:

解析式 頂點坐標對 稱 軸

y=ax^2(0,0) x=0

y=a(x-h)^2(h,0) x=h

y=a(x-h)^2+k(h,k) x=h

y=ax^2+bx+c(-b/2a,[4ac-b^2]/4a) x=-b/2a

當h>0時,y=a(x-h)^2的圖象可由拋物線y=ax^2向右平行移動h個單位得到,

當h<0時,則向左平行移動|h|個單位得到.

當h>0,k>0時,將拋物線y=ax^2向右平行移動h個單位,再向上移動k個單位,就可以得到y=a(x-h)^2+k的圖象;

當h>0,k<0時,將拋物線y=ax^2向右平行移動h個單位,再向下移動|k|個單位可得到y=a(x-h)^2+k的圖象;

當h<0,k>0時,將拋物線向左平行移動|h|個單位,再向上移動k個單位可得到y=a(x-h)^2+k的圖象;

當h<0,k<0時,將拋物線向左平行移動|h|個單位,再向下移動|k|個單位可得到y=a(x-h)^2+k的圖象;

因此,研究拋物線 y=ax^2+bx+c(a≠0)的圖象,通過配方,將一般式化為y=a(x-h)^2+k的形式,可確定其頂點坐標、對稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便.

2.拋物線y=ax^2+bx+c(a≠0)的圖象:當a>0時,開口向上,當a<0時開口向下,對稱軸是直線x=-b/2a,頂點坐標是(-b/2a,[4ac-b^2]/4a).

3.拋物線y=ax^2+bx+c(a≠0),若a>0,當x ≤ -b/2a時,y隨x的增大而減小;當x ≥ -b/2a時,y隨x的增大而增大.若a<0,當x ≤ -b/2a時,y隨x的增大而增大;當x ≥ -b/2a時,y隨x的增大而減小.

4.拋物線y=ax^2+bx+c的圖象與坐標軸的交點:

(1)圖象與y軸一定相交,交點坐標為(0,c);

(2)當△=b^2-4ac>0,圖象與x軸交於兩點A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=

(a≠0)的兩根.這兩點間的距離AB=|x?-x?|

當△=0.圖象與x軸只有一個交點;

當△<0.圖象與x軸沒有交點.當a>0時,圖象落在x軸的上方,x為任何實數時,都有y>0;當a<0時,圖象落在x軸的下方,x為任何實數時,都有y<0.

5.拋物線y=ax^2+bx+c的最值:如果a>0(a<0),則當x= -b/2a時,y最小(大)值=(4ac-b^2)/4a.

頂點的橫坐標,是取得最值時的自變量值,頂點的縱坐標,是最值的取值.

6.用待定係數法求二次函數的解析式

(1)當題給條件為已知圖象經過三個已知點或已知x、y的三對對應值時,可設解析式為一般形式:

y=ax^2+bx+c(a≠0).

(2)當題給條件為已知圖象的頂點坐標或對稱軸時,可設解析式為頂點式:y=a(x-h)^2+k(a≠0).

(3)當題給條件為已知圖象與x軸的兩個交點坐標時,可設解析式為兩根式:y=a(x-x?)(x-x?)(a≠0).

7.二次函數知識很容易與其它知識綜合應用,而形成較為複雜的綜合題目。因此,以二次函數知識為主的綜合性題目是中考的熱點考題,往往以大題形式出現.

反比例函數

形如 y=k/x(k為常數且k≠0) 的函數,叫做反比例函數。

自變量x的取值範圍是不等於0的一切實數。

反比例函數圖像性質:

反比例函數的圖像為雙曲線。

由於反比例函數屬於奇函數,有f(-x)=-f(x),圖像關於原點對稱。

另外,從反比例函數的解析式可以得出,在反比例函數的圖像上任取一點,向兩個坐標軸作垂線,這點、兩個垂足及原點所圍成的矩形面積是定值,為∣k∣。

如圖,上面給出了k分別為正和負(2和-2)時的函數圖像。

當K>0時,反比例函數圖像經過一,三象限,是減函數

當K<0時,反比例函數圖像經過二,四象限,是增函數

反比例函數圖像只能無限趨向於坐標軸,無法和坐標軸相交。

知識點:

1.過反比例函數圖象上任意一點作兩坐標軸的垂線段,這兩條垂線段與坐標軸圍成的矩形的面積為| k |。

2.對於雙曲線y=k/x ,若在分母上加減任意一個實數 (即 y=k/(x±m)m為常數),就相當於將雙曲線圖象向左或右平移一個單位。(加一個數時向左平移,減一個數時向右平移)

主編:趙漢卿 | 編輯:曉飛

長按二維碼,

進群下載中考說明電子版↓

點擊【閱讀原文】快速入群

相關焦點

  • 初中數學知識點總結:一次函數
    初三學習的知識是初中三年學習的匯總,為了方便大家更好地複習,中國教育在線整理了初三數學關於一次函數的知識點,希望對大家的學習有所幫助。  一、知識網絡  二、中考要求  1.經歷函數、一次函數等概念的抽象概括過程,體會函數及變量思想,進一步發展抽象思維能力;經歷一次函  數的圖象及其性質的探索過程,在合作與交流活動中發展合作意識和能力.
  • 2018初中數學代數:二次函數公式定理
    新一輪中考複習備考周期正式開始,中考網為各位初三考生整理了中考五大必考學科的知識點,主要是對初中三年各學科知識點的梳理和細化,幫助各位考生理清知識脈絡,熟悉答題思路,希望各位考生可以在考試中取得優異成績!下面是《2018初中數學代數:二次函數公式定理》,僅供參考!
  • 初中數學函數之二次函數知識點總結
    新一輪中考複習備考周期正式開始,中考網為各位初三考生整理了中考五大必考學科的知識點,主要是對初中三年各學科知識點的梳理和細化,幫助各位考生理清知識脈絡,熟悉答題思路,希望各位考生可以在考試中取得優異成績!下面是《2019年初中數學函數之二次函數知識點總結》,僅供參考!
  • 初中數學函數之一次函數圖像與性質記憶口訣
    新一輪中考複習備考周期正式開始,中考網為各位初三考生整理了中考五大必考學科的知識點,主要是對初中三年各學科知識點的梳理和細化,幫助各位考生理清知識脈絡,熟悉答題思路,希望各位考生可以在考試中取得優異成績!下面是《2019年初中數學函數之一次函數圖像與性質記憶口訣》,僅供參考!
  • 2018初中數學代數:一次函數知識點總結
    新一輪中考複習備考周期正式開始,中考網為各位初三考生整理了中考五大必考學科的知識點,主要是對初中三年各學科知識點的梳理和細化,幫助各位考生理清知識脈絡,熟悉答題思路,希望各位考生可以在考試中取得優異成績!下面是《2018初中數學代數:一次函數知識點總結》,僅供參考!
  • 2019中考數學:二次函數專項練習題(附解析),考前認真練練!
    2019中考數學:二次函數專項練習題(附解析),考前認真練練!二次函數是學習初中數學函數的最後一個函數知識點,這也是最困難的知識點,也是考試必考知識點,並且大多都是以壓軸題的形式出現。一般檢查中二次函數的概念問題都屬於中檔題。這並不是很難。主要考查點的坐標,確定解析式、自變量的取值範圍等,很多學生都可以得分。二次函數的解析式,開口方向,對稱軸和頂點坐標是命題的熱點。拋物線的性質,平移等一般出現在選擇題、填空題。覆蓋範圍很廣,而且這些內容的綜合題一般較難,在解答題中出現。
  • 初中數學函數知識點總結!掌握函數的定義、性質和圖像,收藏一份
    從小學到高中,數學都是學習的大頭,初中的數學在整個學習階段中有限的尤為重要,難點自然也非常多。但是並不是每一個難點都特別困難,今天跟大家分享的就是中考必考的一個知識點:「函數」。初中數學難度肯定比不上高中,但也不低,特別是函數部分。
  • 2018中考數學知識點:二次函數拋物線的性質
    新一輪中考複習備考周期正式開始,中考網為各位初三考生整理了各學科的複習攻略,主要包括中考必考點、中考常考知識點、各科複習方法、考試答題技巧等內容,幫助各位考生梳理知識脈絡,理清做題思路,希望各位考生可以在考試中取得優異成績!下面是《2018中考數學知識點:二次函數拋物線的性質》,僅供參考!
  • 【初中數學 第19期】中考試題研究:反比例函數性質及應用
    >西安高級中學十一中分校 陶慧陝西省中考數學第13題:反比例函數的性質及應用分析;一、解讀目標二、命題本題是陝西省初中學業水平考試數學試題的第13題,是初中階段三種函數類型之一,是函數部分重要知識,是中考必考知識點。
  • 2018中考數學知識點:一次函數的圖像及性質
    新一輪中考複習備考周期正式開始,中考網為各位初三考生整理了各學科的複習攻略,主要包括中考必考點、中考常考知識點、各科複習方法、考試答題技巧等內容,幫助各位考生梳理知識脈絡,理清做題思路,希望各位考生可以在考試中取得優異成績!下面是《2018中考數學知識點:一次函數的圖像及性質》,僅供參考!
  • 中考數學1輪複習12,二次函數圖像和性質考點梳理,明確複習重點
    函數時描述變化的一種數學工具,在「二次函數」這章,我們學習它的圖像和性質,利用它來表示某些問題中的數量關係,解決一些實際問題。每年中考這章都是考試的重點和難點,我們先來梳理下這章的5個考點及相關考試題型。
  • 中考數學真題分析:二次函數與一次函數反比例函數綜合應用
    1.平面直角坐標系是中考的高熱考點,是每卷必考的基礎內容,主要考查數形結合、運動變化 的思想方法.一般以填空題和選擇題形式出現,近幾年部分省市將這部分內容同概率、方程和圓等知識相聯繫,設計成新穎的壓軸題.複習時要明確坐標平面內一點與有序實數對的一一對應關係;理解坐標平面內點的坐標特徵
  • 初中數學一次函數知識點歸納總結!收藏好!期末中考複習一定有用
    一次函數性質是學習數學中函數的基礎,也是高中數學必須的工具,所以需要在學習中加以重視。一次函數知識是每年中考的重點知識,是每卷必考的主要內容.本知識點主要考查一次函數的圖象、性質及應用,這些知識能考查考生綜合能力、解決實際問題的能力.因此,一次函數的實際應用是中考的熱點,和幾何、方程所組成的綜合題是中考的熱點問題。
  • 中考數學提分:初中二次函數知識點總結+考查重點+常考題型,收藏
    都是乾貨,中考數學二次函數提分攻略來了。初中二次函數知識點總結+考查重點+常考題型,值得大家收藏,慢慢學習。二次函數的考點及考查的範圍是比較廣泛的,值得大家畫更多的時間去複習和研究,應網友的要求給大家做全了二次函數的知識點總結,最重要的是重點和高頻考題的詳解。如果你是中考生,現在不知道該複習什麼?自己對這部分是否已經完全的掌握?不妨看完這篇文章,從這些常考題型中,自己是否能順利的做出來?
  • 2018初中數學公式之二次函數頂點坐標公式
    新一輪中考複習備考周期正式開始,中考網為各位初三考生整理了中考五大必考學科的知識點,主要是對初中三年各學科知識點的梳理和細化,幫助各位考生理清知識脈絡,熟悉答題思路,希望各位考生可以在考試中取得優異成績!下面是《2018初中數學公式之二次函數頂點坐標公式》,僅供參考!
  • 初中數學:二次函數專題訓練(含答案)!熟悉思路,衝刺拿高分
    初中數學:二次函數專題訓練(含答案)!熟悉思路,衝刺拿高分二次函數一直是不少初中同學學習當中的一個難點,知識點繁多且題型難度較大,讓不少同學不得不對其望而卻步,可是二次函數是中考數學當中必考的一項內容,且具有較高的分值佔比,如果不掌握好的話肯定是會影響總成績排名的。
  • 備戰中考:二次函數重點知識詳解!考試必考,所有人必須吃透掌握
    備戰中考:二次函數重點知識詳解!考試必考,所有人必須吃透掌握要問初中的同學,哪門學科難度最大,想必不少人都會說是數學。確實也是這樣,初中數學不僅考試分值較高,而且還有函數、幾何等重難點內容,特別是函數在數學考試當中,經常還會以壓軸題的形式出現,因此數學基礎較差的孩子,想要完整的解答出來,無疑是非常困難的。
  • 中考複習專題之二次函數知識點總結
    函數,對於學生數形結合、函數方程等重要數學思想方的培養,對拓寬學生解題思路、發展智力、培養能力具有十分重要意義。二次函數是初中階段函數中的重要函數,它在解決各類數學問題和實際問題中有著廣泛的應用;也是全國中考的重點及熱點內容。
  • 初中數學函數之反比例函數圖像與性質記憶口訣
    新一輪中考複習備考周期正式開始,中考網為各位初三考生整理了中考五大必考學科的知識點,主要是對初中三年各學科知識點的梳理和細化,幫助各位考生理清知識脈絡,熟悉答題思路,希望各位考生可以在考試中取得優異成績!下面是《2019年初中數學函數之反比例函數圖像與性質記憶口訣》,僅供參考!
  • 中考數學一次函數專題複習綱要
    中學數學中一次函數是八年級數學學習的難點,也是中考重要的考查要點之一。一次函數也是初中數學教學中最早出現的典型函數類型,學生通過一次函數學習建立起函數的概念。一次函數複習的總體策略應抓牢五類基礎考點和一類綜合考點。