初中數學《勾股定理》專項訓練

2020-12-21 高效學習馬老師

初中數學《勾股定理》專項訓練

很多初中生數學成績差就是很多的基礎或者某一個重要的知識點沒完全掌握,上課也不聽老師講的重點知識,下課睡覺,每天都保持家和學校兩點一線,在家玩手機,玩電腦,在學校休息睡覺,順便做個小題,怎麼可能提的上去成績呢?數學不好就先從最基礎的開始學,千萬不要浪費時間,一個一個基礎知識點學,慢慢積累起來就會好的。老師這裡整理了初中數學《勾股定理》專項訓練:現在很少有人把初中數學知識分的這麼細了,初中數學基礎打夯實了高中才會掌握的更快。裡面包括了勾股定理知識要點、考點剖析、勾股定理的逆定理、考點三:應用勾股定理在等腰三角形中求底邊上的高,考點七:摺疊問題,勾股數考點四:勾股數的應用、利用勾股定理逆定理判斷三角形的形狀最大、最小角的問題考點五:應用勾股定理解決樓梯上鋪地毯問題考點六、利用列方程求線段的長(方程思想)考點七:摺疊問題(較難的一類),考點八:應用勾股定理解決勾股樹問題,考點九、圖形問題考點十:其他圖形與直角三角形考點十一:與展開圖有關的計算考點十二、航海問題考點十三、網格問題等等。建議家長轉給孩子,如果你需要完整版資料,可以點擊我的頭像進入主頁,私信學習二字,我免費發給你收藏。

如果你需要完整版資料,可以點擊我的頭像進入主頁,私信學習二字,我免費發給你收藏列印。

相關焦點

  • 初中數學:《勾股定理》典型例題分析講解!考試必考,務必收藏好
    初中數學:《勾股定理》典型例題分析講解!考試必考,務必收藏好「勾股定理」是初中數學當中非常重要的一項內容,是幾何、函數等內容的分支,串聯著這些考點內容,因此想要學好勾股定理,肯定還是要多花一些心思的。正所謂「幾何思維」,如果解答類似的題型,沒有自己的想法的話,那麼肯定是難以取得好成績的,所以同學們必須要找準自己的薄弱點,並做針對性的訓練。其實,勾股定理本身的定義不難理解,直角三角形兩條直角邊的平方和等於斜邊的平方,相信很多同學都知道這個公式。
  • 衡中老師:初中數學勾股定理練習題(附答案),建議初中生列印
    衡中老師:初中數學勾股定理練習題(附答案),建議初中生列印在初中階段,數學也算是難點科目了。其中在初中階段,很多同學都會在勾股定理中丟分,勾股定理也是初中數學的基礎知識,但是隨著數學難度加深,混合了其他知識一起考的話,也算是難點了。
  • 勾股定理有哪些主要內容?一張勾股定理的思維導圖讓你一目了然
    在北師大版的教材中,勾股定理安排在了八年級數學上冊的第一章進行學習,主要的內容可以分為「勾股定理」、「勾股定理的逆定理」及「勾股定理的應用」三個部分,接下來我們結合教材的小節部分來看看勾股定理需要掌握哪些知識點。
  • 《勾股定理》:在尋古研學中激發學生那一份數學情懷|復甦的城市
    #01亂七八糟的序言《勾股定理》是初中數學教學的重要內容之一。對於這一節內容的教學,我認為應該讓學生在經歷尋古文化之旅的過程中,讓他們獲得一次激發數學情懷的機會。數學情懷,強調的是學生對數學學習的一種情感體驗,諸如學習的興趣、思維空間、人文素養和數學的多元發展性等。其實就是學生在學習數學的過程中的一種精神方面的體驗。為什麼要把《勾股定理》與數學情懷拉上關係呢?
  • 2021年初中七年級數學定理:直角三角形定理
    中考網整理了關於2021年初中七年級數學定理:直角三角形定理,希望對同學們有所幫助,僅供參考。   定理:在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半   判定定理:直角三角形斜邊上的中線等於斜邊上的一半   勾股定理:直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a^2+b^2=c^2   勾股定理的逆定理:如果三角形的三邊長a、b、c有關係a^2+b^2=c^2,那麼這個三角形是直角三角形
  • 數學老師精心選擇易錯題:勾股定理在解決圖形面積問題中的應用
    #初中數學學習勾股定理的美妙在於它與人類文明有著豐富多彩的聯繫,也是考試中的必考內容之一。如果對你或你的子女學習有幫助,請你選擇:關注、點讚、收藏、轉發、留言。收集、錄入、整理、寫作很辛苦,大家的支持,是我不斷提供後續資料的動力。謝謝大家!
  • 小學數學陰影面積計算,老師說這題要用勾股定理,翠花同學笑了
    歡迎來到小學數學課堂,這是一個專業的的小學數學親子共學平臺,陳老師每天陪您和孩子一起學數學。朋友們,請點擊標題下方藍色按鈕「關注」一起來學習吧。翠花是一名六年級的學霸,平時各科成績都很突出,尤其是數學。
  • 中考數學專題系列三十四:勾股定理在摺疊問題中的應用
    中考數學專題系列三十四:勾股定理在摺疊問題中的應用作者 卜凡初中數學中,有關摺疊的問題也是相對比較難的問題,主要涉及求角的度數、求線段的長度、求周長、面積等,其中求線段的長度的問題必然用到勾股定理,而這也正是孩子們感覺到困難的地方,不知道藉助哪個直角三角形運用勾股定理解決。下面藉助例題和大家介紹這類題型的解題思路和方法。
  • 2020初三數學複習:容易混淆的勾股定理和逆定理,掌握好一種證法
    #初中數學學習其中所涉及到的知識點,最重要的當屬於勾股定理,但本單元決不是理解與掌握一個勾股定理那麼簡單。比如我們還要知道的直角三角形中,30度角所對的直角邊等於斜邊的一半;直角三角形斜邊上的中線等於斜邊的一半,甚至是三角函數。「趙爽弦圖」是由四個全等的直角三角形和中間的小正方形拼成的一個大正方形,它也是初中數學中體現我國輝煌數學成就的知識點之一。
  • 人教版數學教材:愛因斯坦和他的勾股定理?
    原創 Helen 羅博深數學作者 | Helen文 2459字 閱讀時間 5分鐘導語人教版的教材驚現「利用相對論證明了勾股定理」大烏龍,網友:你數學是體育老師教的吧!
  • 初中數學三角形中線計算題,勾股定理巧列方程,有人卻不以為然
    我們需要認真分析題目的已知條件,三邊長度,我們通過勾股定理可以列方程求解面積,但此題的中線和面積關係不大。我們換一種思維考慮問題,三角形的問題我們經常放在直角三角形,如果沒有直角三角形,我們可以輔助線構造直角三角形,從而用勾股定理解決問題,因此本題可以考慮通過做輔助線構造直角三角形來求解。
  • 19.八年級數學:怎麼求AE的長?正方形摺疊問題,勾股定理構造方程
    八年級數學:怎麼求AE的長?正方形摺疊問題,勾股定理構造方程。大家先在草稿本上,認真地做一遍,然後再看後面的視頻。期待您在評論區留言。溫馨提醒:因為視頻內容越來越多,為了更好的把內容進行分類歸納,方便大家更系統的學習,將所有內容優化成三個微信公眾號,分為幾何部分、代數部分、七年級數學。歡迎大家,分別添加,同時關注,方老師的這三個微信公眾號。
  • 初中數學:完全平方、勾股、面積公式在解三角形不等關係中的運用...
    初中數學中,解三角形一直是不怎麼令人愉快的事,一則它涉及知識點眾多:全等三角形、相似三角形、勾股定理等邊邊、角角、邊角關係;二則命題方式層出不窮,總有些讓人意外的「驚喜」……其實,無論題目是如何千變萬化的,但萬變不離其宗,定義、公式、定理等基礎知識是不變的
  • 八年級數學,三角板的組合圖形,沒學習勾股定理,你是不是也要會
    我可以做出來答案,但是孩子給我說沒有學勾股定理,更別談特殊三角形的角度關係了,怎麼解決這個問題呢?這個題目,我拿到之後,嘗試了不少於三種以上的方式去思考,但是最終都被我自己給否定了,為什麼要麼就用到了勾股定理,要門就是用到了特殊角的關係。然後,我開始思考這個題目是人教版八年級上的內容。
  • 勾股定理就是勾三股四弦五?你真的了解勾股定理的前世今生嗎?
    我們現在所熟知的勾股定理,早在公元前11世紀,就已經由周朝數學家商高提出了「勾三、股四、弦五」的說法,因而我們又稱勾股定理為「商高定理」。迄今為止,經過漫長歲月的沉澱,勾股定理現已經出現了大約500餘種證明方法,也是數學定理中證明方法最多、證明思路最全的定理之一。
  • 八年級數學章節總結,掌握好這良方,學好勾股定理事半功倍!
    經過幾天的學習,我們完成了勾股定理的學習。但是不少學生對勾股定理這章所學內容依然是一頭霧水,下面總結這章的知識點,給這些同學一個學習良方。其實對勾股定理的學習只需把握好4點,對逆定理的學習把握好一點。對勾股定理的學習首先要熟記勾股定理,直角三角形兩直角邊的平方和等於斜邊的平方,使用格式:∵△ABC中,∠____=____° ,∴a2+b2=c2。其次就是掌握勾股定理常用的證明方法,勾股定理現約有500種證明方法,是數學定理中證明方法最多的定理之一。
  • 寒假預習,初二數學勾股定理專題,證明及簡單應用,掌握核心
    今年的春節過得比較的枯燥,雖然很多事情受到了影響,但是對於學生來說,可以利用這段時間在家裡靜心的學習,在開學之後能夠跟上老師的步伐,同時提前預習,可以提高上課效率,保持學習的狀態,今天我們一起學習交流初二數學勾股定理專題,掌握勾股定理的核心,掌握勾股定理的證明及其簡單的應用。
  • 2020初三數學複習:1個垂徑定理是如何裂變成30個定理推論的
    #初中數學學習在初中數學學習中,我們稱為「知二推三」。這樣,原來的一個定理,實際上已經變成了30個定理。這可以說是初中幾何學習中,我們所見到的定理中,它當之無愧地成為第一個最複雜的幾何定理。所以對這個定理,各地出題的考官紛紛發招,選擇其進行命題,實現對學生掌握本節知識情況進行考查的目的。
  • 用相對論證明勾股定理,這個錯誤有點離譜
    據媒體報導,近日,有網友在網上發帖稱,人教版八年級下冊數學自讀課本中有關「愛因斯坦證明勾股定理」的內容疑似出現錯誤。網友上傳的圖片顯示,人教版八年級下冊數學自讀課本的一節內容稱,勾股定理曾經引起愛因斯坦的濃厚興趣,「愛因斯坦用相對論來證明勾股定理」,並附上用愛因斯坦的質能方程(E=mc)證明勾股定理的推算過程。勾股定理是中國古代數學的成就之一,能與愛因斯坦這樣的科學巨匠聯繫起來,不僅證明勾股定理是放之四海皆準,而且能證明一些科學的基本原理是相通的。
  • 勾股定理經典例題解析,八年級學生掌握好,提高成績才有戲
    勾股定理是初中數學解題的重要工具,要求能通過探索勾股定理的應用,培養運算能力、邏輯推理能力和應用意識,並逐步滲透模型思想。就八年級的學生來說,要想提高數學成績,這幾道例題必須掌握。例題2:小麗想知道自家門前小河的寬度,於是她按以下辦法測出了如下數據:如圖,小麗在河岸邊選取點A,在點A的對岸選取一個參照點C,測得∠CAD =30°;小麗沿河岸向前走30m選取點B,並測得∠CBD=60(A,B,D在一條直線上).請根據以,上數據,用你所學的數學知識,幫助小麗計算小河的寬度。