圖3:人源TOP2A蛋白的結構域示意圖。
那麼,H2ApT120對TOP2A的招募作用是直接還是間接的呢?為了解答這個疑問,張妙同學利用林世賢實驗室提供的獨特技術,從一株改造過的大腸桿菌中表達純化了第120位蘇氨酸被替換為磷酸化的絲氨酸的組蛋白H2A,並在梁材同學的幫助下證實,與野生型的H2A蛋白相比,磷酸化的H2A蛋白與TOP2A蛋白在體外的結合能力明顯增強。這些實驗結果不僅展示了H2ApT120對TOP2A的直接招募作用,而且也為探究TOP2A在著絲粒區的功能提供了重要的實驗手段。通過破壞H2ApT120與TOP2A的結合,選擇性地去除TOP2A在著絲粒區的定位而不影響其在染色體臂上的分布,張妙同學發現,著絲粒區姐妹染色體DNA的去連環(decatenation)作用明顯受阻,主要表現為有絲分裂後期細胞中由超細DNA構成的染色體橋(Ultra-fine anaphase DNA bridges)的顯著增加(註:此類染色體橋容易發生DNA損傷)。因此,H2ApT120與TOP2A的結合對於解除有絲分裂期姐妹染色單體間的DNA連環是重要的。這一系列研究結果表明,當細胞進入有絲分裂時,Bub1對組蛋白H2A的磷酸化修飾招募TOP2A至著絲粒,促進著絲粒區DNA連環的去除,進而保證了染色體的精確分離和基因組的穩定性(圖4)。基於TOP2抑制劑在癌症化療中的廣泛應用【14】,以及近期報導的Bub1小分子抑制劑對於癌細胞增殖的抑制作用【15】,這項研究也為靶向TOP2A和Bub1的癌症治療提供了新的視角。圖4:TOP2A在有絲分裂期著絲粒區定位的分子機制及功能。
汪方煒教授是論文的通訊作者,博士生張妙為第一作者,汪方煒實驗室的博士生梁材和陳親富以及林世賢實驗室的趙紅霞同學等也有貢獻。劉洪(杜蘭大學,Tulane University)Proper chromosome segregation is essential for maintaining chromosome stability as well as preventing many human diseases, such as cancer. During mitotic cell cycle, chromatin is duplicated at S phase (sister chromatids). Duplicated sister chromatids are linked together by a protein complex cohesin, which is called sister-chromatid cohesion, and by intertwined DNA fibers, which is referred to as DNA catenation. Maintenance of these sister-chromatid linkages till late mitosis, especially sister-chromated cohesion, is critical for chromosome stability. At late mitosis (anaphase onset), these sister-chromatid linkages must be resolved to allow sister chromatids to segregate from each other. Failure in doing so results in lagging chromosomes and/or ultra-fine anaphase bridges, which also significantly jeopardize chromosome stability. Therefore, proper orchestration of sister-chromatid cohesion and DNA catenation is critical for protecting chromosome stability. However, how this is achieved is poorly understood.An interesting piece of work from Dr. Wang’s lab has identified a key orchestrator, Bub1, for these two processes. Extensive previous work has shown that Bub1, a mitotic kinase, enriches an essential cohesion protector, Shugoshin, to centromeres to protect sister-chromatid cohesion there by phosphorylating histone H2A (pH2A). Shugoshin is targeted to centromeres by directly binding Bub1-phosphorylated histone H2A. These previous studies have established Bub1/pH2A as an important regulatory pathway for centromeric cohesion protection. Topoisomerase II, an important enzyme that resolves DNA catenation, is one of scaffold chromosome proteins. Interestingly, this enzyme has long been noticed to be enriched at centromeres during mitosis, but the biological functions and regulation of this pool of Topoisomerase II largely remain unknown. Using elegant cell-biological and biochemical tools, Dr. Wang and his colleagues convincingly demonstrated that this very Bub1/pH2A also enriches Topoisomerase II to centromeres. Interestingly, like Shugoshin, the centromeric enrichment of Topoisomerase II is also through its direct binding with pH2A. They further showed that the Bub1/pH2A-enriched pool of Topoisomerase II at centromeres is important for timely and proper resolution of catenated DNA fibers at anaphase, thus reducing ultra-fine anaphase bridges that endanger chromosome stability. These novel findings extend our understanding horizontal on the molecular mechanisms underlying chromosome segregation. Especially, they center Bub1 as a master conductor to orchestrate two important biological processes. In addition, this study also provokes several important follow-up questions. What is the relative binding affinity of these two readers, Shugoshin and Topoisomerase II, toward phosphorylated histone H2A? Knowing the answer to this question could help determine the ratio between two proteins at centromeres, which might be a critical factor to regulate chromosome segregation during mitosis. Moreover, structural studies are needed to further address how these two proteins read the epigenetic mark pH2A?劉洪, 1998 本科畢業於四川大學,2009 年獲得美國佛羅裡達州立大學博士學位。於2009-2015 年在美國西南醫學中心/霍華德醫學研究所作博士後研究,2015年作為獨立PI(Assistant professor)加入美國杜蘭大學(Tulane University)。實驗室主要從事有絲分裂過程中染色體分離機制的研究。目前研究集中在三個方面:1、染色體著絲粒粘連(Centromere cohesion)的保護機制;2、動粒(kinetochore)和紡錘體微管 (Spindle microtubule)相互結合的調控機制;3、著絲粒轉錄(centromere transcription)的功能與調控。已經在Nature Cell Biology、Molecular Cell、Current Biology、Journal of Cell Biology 等雜誌發表多篇研究文章。https://www.embopress.org/doi/10.15252/embj.20191018631. Sender Ron., Fuchs Shai., Milo Ron., (2016). Revised Estimates for the Number of Human and Bacteria Cells in the Body., PLoS Biol., 14, e1002533.2. Yu Hongtao., (2013). Chromosome biology: Wapl spreads its wings., Curr. Biol., 23, R923-5.3. Morales Carmen., Losada Ana., (2018). Establishing and dissolving cohesion during the vertebrate cell cycle., Curr. Opin. Cell Biol., 52, 51-57.4. Wang Lily Hui-Ching., Mayer Bernd., Stemmann Olaf., Nigg Erich A., (2010). Centromere DNA decatenation depends on cohesin removal and is required for mammalian cell division., J. Cell. Sci., 123, 806-13.5. Farcas Ana-Maria., Uluocak Pelin., Helmhart Wolfgang., Nasmyth Kim., (2011). Cohesin's concatenation of sister DNAs maintains their intertwining., Mol. Cell, 44, 97-107.6. Earnshaw W C., Halligan B., Cooke C A., Heck M M., Liu L F., (1985). Topoisomerase II is a structural component of mitotic chromosome scaffolds., J. Cell Biol., 100, 1706-15.7. Taagepera S., Rao P N., Drake F H., Gorbsky G J., (1993). DNA topoisomerase II alpha is the major chromosome protein recognized by the mitotic phosphoprotein antibody MPM-2., Proc. Natl. Acad. Sci. U.S.A., 90, 8407-11.8. Rattner J B., Hendzel M J., Furbee C S., Muller M T., Bazett-Jones D P., (1996). Topoisomerase II alpha is associated with the mammalian centromere in a cell cycle- and species-specific manner and is required for proper centromere/kinetochore structure., J. Cell Biol., 134, 1097-107.9. Dawlaty Meelad M., Malureanu Liviu., Jeganathan Karthik B., Kao Esther., Sustmann Claudio., Tahk Samuel., Shuai Ke., Grosschedl Rudolf., van Deursen Jan M., (2008). Resolution of sister centromeres requires RanBP2-mediated SUMOylation of topoisomerase IIalpha., Cell, 133, 103-15.10. Tang Zhanyun., Shu Hongjun., Oncel Dilhan., Chen She., Yu Hongtao., (2004). Phosphorylation of Cdc20 by Bub1 provides a catalytic mechanism for APC/C inhibition by the spindle checkpoint., Mol. Cell, 16, 387-97.11. Jia Luying., Li Bing., Yu Hongtao., (2016). The Bub1-Plk1 kinase complex promotes spindle checkpoint signalling through Cdc20 phosphorylation., Nat Commun, 7, 10818.12. Kawashima Shigehiro A., Yamagishi Yuya., Honda Takashi., Ishiguro Kei-ichiro., Watanabe Yoshinori., (2010). Phosphorylation of H2A by Bub1 prevents chromosomal instability through localizing shugoshin., Science, 327, 172-7.13. Li Feng., Kim Hyeung., Ji Zhejian., Zhang Tianpeng., Chen Bohong., Ge Yuanlong., Hu Yang., Feng Xuyang., Han Xin., Xu Huimin., Zhang Youwei., Yu Hongtao., Liu Dan., Ma Wenbin., Songyang Zhou., (2018). The BUB3-BUB1 Complex Promotes Telomere DNA Replication., Mol. Cell, 70, 395-407.e4.14. Nitiss John L., (2009). Targeting DNA topoisomerase II in cancer chemotherapy., Nat. Rev. Cancer, 9, 338-50.15. Siemeister Gerhard., Mengel Anne., Fernández-Montalván Amaury E., Bone Wilhelm., Schröder Jens., Zitzmann-Kolbe Sabine., Briem Hans., Prechtl Stefan., Holton Simon J., Mönning Ursula., von Ahsen Oliver., Johanssen Sandra., Cleve Arwed., Pütter Vera., Hitchcock Marion., von Nussbaum Franz., Brands Michael., Ziegelbauer Karl., Mumberg Dominik., (2019). In VitroInhibition of BUB1 Kinase by BAY 1816032 Sensitizes Tumor Cells toward Taxanes, ATR, and PARP Inhibitors and ., Clin. Cancer Res., 25, 1404-1414.