隨著航空航天事業的快速發展,要求結構材料具有更低的密度、更長的使用壽命,並能承受更複雜嚴苛的服役條件。鈦合金及鈦基複合材料質量輕、比強度高,有著優異的耐腐蝕及耐高溫等綜合性能[1],在飛行器及航空航天發動機上有著廣泛的應用,從20世紀50年代首次應用到現在,鈦合金在其服役條件下已經取得良好的經濟效益,但仍有很多工程化應用問題難以解決,如高溫鈦合金存在的「熱障」溫度,高強韌鈦合金難以同時達到較高的強度及優異的斷裂韌度,航空發動機用鈦合金在高速摩擦下發生的「鈦火」等問題。為克服傳統鈦合金存在的不足,深入研究鈦合金在不同服役條件下微觀組織對性能的影響,同時對鈦基複合材料及其工程化應用已成為研究熱點。本文對鈦合金及鈦基複合材料在航空航天領域的應用現狀進行總結,針對目前存在的問題進行了多維度分析,對未來的發展趨勢作出展望,並指出相應的研究重點。
1.
鈦合金及鈦基複合材料
在航空航天的發展現狀
1.1 鈦合金的發展現狀
自20世紀50年代起,鈦合金作為工業新金屬材料在全世界範圍出現後,航空工業鈦材用量已佔到全世界鈦材市場一半以上[2]。目前,飛機的結構材料主要是鋁合金、鈦合金、鋼、鎂合金及複合材料[3],其中有優異減重效果的鈦合金在各個國家商用及軍用飛機上的用量佔比越來越高(如圖1)[4-6]。波音第一架客機Boeing 707機身鈦合金僅佔到總質量分數的0.2%,到最新一代客機Boeing 787,鈦合金佔比已達15%[5]。我國的大飛機C919的鈦合金用量與波音777相當,佔到9%~10%,而俄羅斯新一代客機MS-21鈦合金用量佔比達到25%。在國外第三代戰鬥機上鈦合金用量約佔機體結構質量的 20%~25%,在第五代戰鬥機 F-22上高達41%[6]。
鈦合金在航空工業上的應用主要為飛機結構用鈦合金和航空發動機用鈦合金[1](如圖2)。飛機結構用鈦合金主要應用在飛機骨架、艙門、液壓管路及接頭、起落架、蒙皮、鉚釘、艙門、翼梁等,航空發動機用鈦合金主要應用在壓氣機葉片、盤和機匣等零件上[5]。飛機結構用鈦合金的使用溫度一般不高於350 ℃,其在比強度、韌性、抗疲勞性能、焊接工藝性能等方面有較高要求,如美國軍用大型運輸機C-17的安定面轉軸等關鍵部位採用高強高韌性的Ti-62222S鈦合金;航空發動機用鈦合金注重高溫下的比強度、熱穩定性、抗氧化性以及抗蠕變等性能,如F-22戰鬥機所用F119發動機的風扇採用了寬弦空心鈦合金葉片,在滿足性能要求的同時,可以進一步提高推重比[1,7]。鈦合金受到飛機設計者的青睞,其中主要的一方面是在保證結構強度的同時,大幅減輕結構質量,比如應用於液壓管道,和鋼管相比,減重可達40%。目前,應用於航空方面的新型高性能鈦合金主要為高溫鈦合金、高強韌鈦合金、阻燃鈦合金等,其中作為現代航空發動機關鍵材料之一的高溫鈦合金是主要的發展方向之一[8]。
圖1 鈦合金在飛機上的應用[4-6]鈦合金在航天方面上的主要應用是火箭發動機殼體、火箭噴嘴導管、飛彈的外殼及宇宙飛船的船艙或者燃料和氧化劑儲存箱及其他高壓容器(如圖3)[9]。對於航天飛行器來說,除滿足航空用鈦合金使用性能要求外,還必須具有耐高溫、耐低溫、抗輻射等性能。現如今,鈦合金已成為航天領域不可或缺的關鍵材料。如:美國「阿波羅」飛船的50個壓力容器約85%採用鈦製成;日本第一顆實驗衛星「大角」號採用了Ti-2Al-2Mn鈦合金;俄羅斯在「能源-暴風雪」號、「和平-1」號、「進步」號、「金星」號、「月球」號太空飛行器上也廣泛使用了鈦合金材料[10]。
圖2 波音787材料使用情況[5]鈦基複合材料可分為連續纖維增強鈦基複合材料(continuously reinforced titanium matrix composites,CRTMCs)和非連續晶須或顆粒增強鈦基複合材料(discontinuously reinforced titanium matrix composites,DRTMCs)[12]。近年來,國內上海交通大學、西北工業大學、哈爾濱工業大學、西北有色研究院等都對此展開了相關的研究工作(如表 1)。
表1 國內幾種鈦基複合材料的性能[13-17]2.
美國於1954年成功研製出使用溫度可達350 ℃的α+β兩相型高溫鈦合金,在航空航天領域得到廣泛的應用。之後,隨著航空航天技術的不斷發展,各國不斷研發出有著更高使用溫度、更長使用壽命的高溫鈦合金。目前,能穩定在600 ℃使用的高溫鈦合金有英國的IMI834、美國的Ti-1100、俄羅斯的BT18Y和BT36等合金,已成功應用到T55-712及Trent700等航空發動機[27]。表3列出典型600 ℃及600 ℃以上高溫鈦合金的成分及特點[27-29]。這些合金均以Ti-Al-Sn-Zr-Mo-Si作為主成分系,不同之處在於其中的合金化含量以及β穩定元素不同[30]。表4列出幾種典型600 ℃及600 ℃以上高溫鈦合金的力學性能[27, 31-33]。目前為止,能穩定在600 ℃以上應用的航空發動機用鈦合金的發展依然面臨著巨大的困難和挑戰,表2 鈦基複合材料中常用的增強體物理性質表4 國內外幾種典型600 ℃及600 ℃以上高溫鈦合金的力學性能[27,31-33]
Table 4 Mechanical properties of several typical high temperature titanium alloys at 600 ℃ and above at home and abroad[27,31-33]
(2)添加稀土元素,提高合金的熱穩定性。稀土元素能夠通過脫氧作用淨化鈦合金基體,並在晶界彌散析出高熔點稀土氧化物形成位錯環來強化基體、抑制α2等脆性相的析出與長大,提高合金的熱穩定性[29]。陳子勇等[36]添加微量元素Er和Re,設計出新型耐650 ℃高溫鈦合金Ti-6.5Al-2.5Sn-9Zr-0.5Mo-1Nb-1W-0.25Si-0.1Er和Ti-6.5Al-2.5Sn-9Zr-0.5Mo-1Nb-1W-0.25Si-0.1Re,兩種合金在 650 ℃下的力學性能與600 ℃下Ti60合金性能相當,如圖6所示為兩種高溫鈦合金在室溫和高溫環境下的拉伸性能。
圖6 合金熱處理態的拉伸性能[37] (a)室溫;(b)650 ℃表6 國際典型高強韌鈦合金[4,44-48]
Table 6 International typical high-strength titanium alloy[4,44-48]
3.
(1)高溫鈦合金目前依然不能在600 ℃下穩定工作,需制定出更加合理的高溫鈦合金成分,進一步完善特殊的熱加工及熱處理工藝,並與高溫抗氧化塗層更好的結合應用在航空航天發動機中。參考資料:
[1] 趙丹丹. 鈦合金在航空領域的發展與應用[J]. 鑄造,2014,63(11):1114-1117.(ZHAO D D. Development and application of titanium alloy in the aviation[J]. Foundry,2014,63(11):1114-1117.)[2] 何蕾. 鈦合金在航空領域的市場展望[J]. 金屬世界,2015(5):4-7.(HE L. Market analysis of titanium alloy used in aviation field[J]. Metal World,2015(5):4-7.)[3]郭紅軍. 日新月異的航空金屬材料 [J]. 大飛機,2015(4):22-25.( GUO H J. Rapidly changing aviation metal materials[J]. Jetliner,2015(4):22-25.)[4] 黃張洪,曲恆磊,鄧超,等. 航空用鈦及鈦合金的發展及應用 [J]. 材料導報,2011,25(1):102-107.(HUNG Z H,QU H L,DENG C,et al. Development and application of aerial titanium and its alloys[J]. Materials Reports,2011,25(1):102-107.)[5] 李亞江,劉坤. 鈦合金在航空領域的應用及其先進連接技術 [J]. 航空製造技術,2015(16):34-37.(LI Y J,LIU K. Application and advanced bonding technology of titanium alloy in aviation industry[J]. Aeronautical Manufacturing Technology,2015(16):34-37.)[6] 劉全明,張朝暉,劉世鋒,等. 鈦合金在航空航天及武器裝備領域的應用與發展[J]. 鋼鐵研究學報,2015,27(3):1-4.(LIU Q M,ZHANG Z H,LIU S F,et al. Application and development of titanium alloy in aerospace and military hardware[J]. Journal of Iron and Steel Research,2015,27(3):1-4.)[7] 陳仲光,張志舒,李德旺,等. F119發動機總體性能特點分析與評估[J]. 航空科學技術,2013(3):39-42.(CHEN Z G,ZHANG Z S,LI D W,et al. Analysis and evaluation of F119 engine overall performance[J]. Aeronautical Science & Technology,2013(3):39-42.)[8] 黃天娥,範桂彬,閆海,等. 航空用鈦合金材料及鈦合金標準發展綜述[J]. 航空標準化與質量,2010(3):30-33.(HUANG T E,FAN G B,YAN H,et al. Application of titanium alloy and its standardization in aviation:An overview[J]. Aeronautic Standardization & Quality,2010(3):30-33.)[9] 張緒虎,單群,陳永來,等. 鈦合金在航天飛行器上的應用和發展 [J]. 中國材料進展,2011,30(6):28-32,63.(ZHANG X H,SHAN Q,CHEN Y L,et al. Application and development of titanium alloy for aircrafts[J]. Materials China,2011,30(6):28-32,63.)[10]鄒武裝. 鈦及鈦合金在航天工業的應用及展望[J]. 中國有色金屬,2016(1):70-71.(ZOU W Z. Application and prospect of titanium and titanium alloy in aerospace industry[J]. China Nonferrous Metals,2016(1):70-71.)[11]黃陸軍,耿林. 非連續增強鈦基複合材料研究進展[J].航空材料學報,2014,34(4):126-138.(HUANG L J,GENG L. Research progress of discontinuously reinforced titanium matrix composites[J].Journal of Aeronautical Materials, 2014, 34( 4) :126-138.)[12]HAYATM D,SINGH H,HE Z,et al. Titanium metal matrix composites:An overview[J]. Composites Part A,2019,121:418-438.[13]ZHAO G M,YANG Y Q,ZHANG W,et al. Microstructure and grain growth of the matrix of SiCf/Ti-6Al-4V composites prepared by the consolidation of matrixcoated fibers in the β phase field[J]. Composites Part B,2013,52:155-163.[14]ZHANG T,WANG G,SHU Y,et al. Preparation and characterization of novel Ti( Al) -TiB2/Ti3Al metallicintermetallic laminated composites[J]. Vacuum, 2020,174:109217.[15]WEI S L,HUANG L J,LI X T,et al. Interactive effects of cyclic oxidation and structural evolution for Ti-6Al-4V/( TiC+TiB) alloy composites at elevated temperatures[J]. Journal of Alloys and Compounds,2018,752:164-178.[16]SUN X,HAN Y,CAO S,et al. Rapid in-situ reaction synthesis of novel TiC and carbon nanotubes reinforced titanium matrix composites[J]. Journal of Materials Science & Technology,2017,33(10):1165-1171.[17]JIAO F,LIU M,JIANG F,et al. Continuous carbon fiber reinforced Ti/Al3Ti metal-intermetallic laminate( MIL)composites fabricated using ultrasonic consolidation assisted hot pressing sintering[J]. Materials Science and Engineering:A,2019,765:138255.[18]JIAO Y,HUANG L,GENG L. Progress on discontinuously reinforced titanium matrix composites[J]. Journal of Alloys and Compounds,2018,767:1196-1215.[19]韓遠飛,孫相龍,邱培坤,等. 顆粒增強鈦基複合材料先進加工技術研究與進展[J]. 複合材料學報,2017,34(8):1625-1635.(HAN Y F,SUN X L,QIU P K,et al. Research and development of processing technology on particulate reinforced titanium matrix composite[J]. Acta Materiae Compositae Sinica,2017,34(8):1625-1635.)[20]羅賢暉,劉品旺,宋靜雯,等. 原位自生非連續顆粒增強鈦基複合材料的組織和力學性能[J]. 機械工程材料,2018,42(12):31-35,41.(LUO X H,LIU P W,SONG J W,et al. Microstructure and mechanical properties of in-situ synthesized discontinuous particles reinforced T[J]. Materials for Mechanical Engineering,2018,42(12):31-35,41.)[21]呂維潔,郭相龍,王立強,等. 原位自生非連續增強鈦基複合材料的研究進展 [J]. 航空材料學報,2014,34(4):139-146.(LU W J,GUO X L,WANG L Q,et al. Progress on insitu discontinuously reinforced titanium matrix composites[J]. Journal of Aeronautical Materials,2014,34(4):139-146.)[22]JIAO Y,HUANG L J,WANG S,et al. Effects of firstscale TiBw on secondary-scale Ti5Si3 characteristics and mechanical properties of in-situ(Ti5Si3+TiBw)/Ti6Al4V composites[J]. Journal of Alloys and Compounds,2017,704:269-281.[23]WANG B,HUANG L J,GENG L,et al. Modification of microstructure and tensile property of TiBw/near-α Ti composites by tailoring TiBw distribution and heat treatment[J]. Journal of Alloys and Compounds,2017,690:424-430.[24]WANG D,ZHANG R,LIN Z,et al. Effect of microstructure on mechanical properties of net-structured TiBw/TA15 composite subjected to hot plastic deforma-tion[J]. Composites Part B,2020,187:269-281.[25]韓遠飛,邱培坤,孫相龍,等. 非連續顆粒增強鈦基複合材料製備技術與研究進展[J]. 航空製造技術,2016(15):62-74.(HAN Y F,QIU P K,SUN X L,et al. Progress and fabrication technology on discontinuously reinforced titanium matrix composites[J]. Aeronautical Manufacturing Technology,2016(15):62-74.)[26]WANG D,LI H,ZHENG W. Oxidation behaviors of TA15 titanium alloy and TiBw reinforced TA15 matrix composites prepared by spark plasma sintering[J].Journal of Materials Science & Technology, 2020, 37:46-54.[27]曾立英,趙永慶,洪權,等. 600 ℃高溫鈦合金的研發[J]. 鈦工業進展,2012,29(5):1-5.(ZENG L Y,ZHAN Y Q,HONG Q,et al. Research and development of high temperature titanium alloy at 600 ℃[J]. Titanium Industry Progress,2012,29(5):1-5.)[28]蔡建明,李臻熙,馬濟民,等. 航空發動機用600 ℃高溫鈦合金的研究與發展 [J]. 材料導報,2005,19(1):50-53.(CAI J M,LI Z X,MA J M,et al. Research and development of 600 ℃ high temperature titanium alloy for aeroengine[J]. Materials Reports,2005,19(1):50-53.)[29]劉瑩瑩,陳子勇,金頭男,等. 600 ℃高溫鈦合金髮展現狀與展望 [J]. 材料導報,2018,32(11):1863-1869+1883.(LIU Y Y,CHEN Z Y,JIN T N,et al. Present situation and prospect of 600 ℃ high-temperature titanium alloy[J]. Materials Reports, 2018, 32( 11) :1863-1869+1883.)[30]蔡建明,弭光寶,高帆,等. 航空發動機用先進高溫鈦合金材料技術研究與發展 [J]. 材料工程,2016,44(8):1-10.(CAI J M,MI G B,GAO F,et al. Research and development of some advanced high temperature titanium alloy for aero-engine[J]. Journal of Materials Engineering,2016,44(8):1-10.)[31]DAI J,ZHU J,CHEN C,et al. High temperature oxidation behavior and research status of modifications on improving high temperature oxidation resistance of titanium alloys and titanium aluminides:A review[J].Journal of Alloys and Compounds,2016,685:784-798.[32]王清江,劉建榮,楊銳. 高溫鈦合金的現狀與前景[J].航空材料學報,2014,34(4):1-26.(WANG Q J,LIU J R,YANG R. High temperature titanium alloy:status and perspective[J]. Journal of Aeronautical Materials,2014,34(4):1-26.)[33]許國棟,王鳳娥. 高溫鈦合金的發展和應用[J]. 稀有金屬,2008,32(6):774-780.(XU G D,WANG F E. Development and application on high-temperature Ti-based alloys[J]. Chinese Journal of Rare Metals,2008,32(6):774-780.)[34]蕭今聲,許國棟. 提高高溫鈦合金性能的途徑[J]. 中國有色金屬學報,1997,7(4):100-108.(XIAO J S,XU G D. Several ways to improve mechanical properties of high-temperature Ti-based alloy[J]. The Chinese Journal of Nonferrous Metals,1997,7(4):100-108.)[35]ZHANG W J,SONG X Y,HUI S X,et al. Phase precipitation behavior and tensile property of a Ti-Al-Sn-Zr-Mo-Nb-W-Si titanium alloy[J]. Rare Metals, 2015,37(12):1064-1069.[36]陳子勇,劉瑩瑩,靳豔芳,等. 航空發動機用耐650 ℃高溫鈦合金研究現狀與進展[J]. 航空製造技術,2019,62(19):22-30.(CHEN Z Y,LIU Y Y,JIN Y F,et al. Research on 650℃ high temperature titanium alloy technology for aeroengine[J]. Aeronautical Manufacturing Technology,2019,62(19):22-30.)[37]李旭升,辛社偉,毛小南,等. 鈦合金氧化行為研究進展 [J]. 鈦工業進展,2014,31(3):7-13.(LI X S,XIN S W,MAO X N,et al. Progress in research oxidation behavior of titanium alloy[J]. Titanium Industry Progress,2014,31(3):7-13.)[38]BEWLAY B P,NAG S,SUZUKI A,et al. TiAl alloys in commercial aircraft engines[J]. Materials at High Temperatures,2016,33(4/5):549-559.[39]QU S J,TANG S Q,FENG A H,et al. Microstructural evolution and high-temperature oxidation mechanisms of a titanium aluminide based alloy[J]. Acta Materialia,2018,148:300-310.[40]LI W,CHEN Z,LIU J,et al. Effect of texture on anisotropy at 600 ℃ in a near-α titanium alloy Ti60 plate[J].Materials Science and Engineering:A,2017,688:322-329.[41]SHEN J,SUN Y,NING Y,et al. Superplasticity induced by the competitive DRX between BCC beta and HCP alpha in Ti-4Al-3V-2Mo-2Fe alloy[J]. Materials Characterization,2019,153:304-317.[42]ZHANG Z,FAN J,TANG B,et al. Microstructural evolution and FCC twinning behavior during hot deformation of high temperature titanium alloy Ti65[J]. Journal of Materials Science & Technology,2020,49:56-69.[43]GUO R,LIU B,XU R,et al. Microstructure and mechanical properties of powder metallurgy high temperature titanium alloy with high Si content[J]. Materials Science and Engineering:A,2020,777:138993.[44]楊冬雨,付豔豔,惠松驍,等. 高強高韌鈦合金研究與應用進展 [J]. 稀有金屬,2011,35(4):575-580.(YANG D Y,FU Y Y,HUI S X,et al. Research and application of high strength and high toughness titanium alloy[J]. Chinese Journal of Rare Metals,2011,35(4):575-580.)[45]趙永慶,馬朝利,常輝,等. 1200 MPa級新型高強韌鈦合金 [J]. 中國材料進展,2016,35(12):914-918.(ZHAO Y Q,MA Z L,CHANG H,et al. New high strength and high toughness titanium alloy with 1200 MPa[J]. Materials China,2016,35(12):914-918.)[46]汪建林. 高強度β鈦合金的發展和應用[J]. 上海鋼研,2001(2):25-33.(WANG J L. Development and application of the highstrength β-titanium alloys[J]. Shanghai Steel & Iron Research,2001(2):25-33.)[47]張利軍,薛祥義,常輝. 我國航空用變形鈦合金材料[J]. 中國材料進展,2012,31(8):40-46.(ZHANG L J,XUE X Y,CHANG H. Deformation of titanium alloy materials for China aircraft[J]. Materials China,2012,31(8):40-46.)[48]朱知壽,王新南,童路,等. 航空用損傷容限型鈦合金研究與應用 [J]. 中國材料進展,2010,29(5):14-17,24.(ZHU Z S,WANG X N,TONG L,et al. Research and application of damage tolerance titanium alloys for aeronautical use[J]. Materials China,2010,29(5):14-17,24.)[49]FANNING J C. Properties of TIMETAL 555(Ti-5Al-5Mo-5V-3Cr-0.6Fe)[J]. Journal of Materials Engineering and Performance,2005,14(6):788-791.[50]張翥,惠松驍,劉偉. 高強高韌TB10鈦合金棒材研究[J]. 稀有金屬,2006,30(2):221-225.(ZHANG Z,HUI S X,LIU W. High strength and high toughness TB10 titanium alloy bars[J]. Chinese Journal of Rare Metals,2006,30(2):221-225.)[51]趙永慶. 我國創新研製的主要船用鈦合金及其應用[J]. 中國材料進展,2014,33(7):398-404.(ZHAO Y Q. The new main titanium alloy used for shipbuilding developed in China and their applications[J].Materials China,2014,33(7):398-404.)[52]趙永慶,葛鵬. 我國自主研發鈦合金現狀與進展[J]. 航空材料學報,2014,34(4):51-61.(ZHAO Y Q,GE P. Current situation and development of new titanium alloys invented in china[J]. Journal of Aeronautical Materials,2014,34(4):51-61.)[53]SONG Z Y,SUN Q Y,XIAO L,et al. Effect of prestrain and aging treatment on microstructures and tensile properties of Ti-10Mo-8V-1Fe-3.5Al alloy[J]. Materials Science and Engineering:A,2010,527(3):691-698.[54]WAIN N,HAO X J,RAVI G A,et al. The influence of carbon on precipitation of α in Ti-5Al-5Mo-5V-3Cr[J].Materials Science and Engineering:A, 2010,527(29/30):7673-7683.[55]LU J,ZHAO Y,GE P,et al. Precipitation behavior and tensile properties of new high strength beta titanium alloy Ti-1300[J]. Journal of Alloys and Compounds, 2015,637:1-4.[56]SHAO L,XIE G,LI H,et al. Combustion Behavior and Mechanism of Ti14 Titanium Alloy[J].Materials(Basel),2020,13(3):682.[57]CHEN Y N,HUO Y Z,SONG X D,et al. Burn-resistant behavior and mechanism of Ti14 alloy[J]. International Journal of Minerals, Metallurgy, and Materials, 2016,23(2):215-221.[58]曹京霞,黃旭,弭光寶,等. Ti-V-Cr系阻燃鈦合金應用研究進展 [J]. 航空材料學報,2014,34(4):92-97.(CAO J X,HUANG X,MI B G,et al. Research progress on application technique of Ti-V-Cr Burn resistant titanium alloys[J]. Journal of Aeronautical Materials,2014,34(4):92-97.)[59]雷力明,黃旭,王寶,等. 阻燃鈦合金的研究和發展[J].材料導報,2003(5):21-23.(LEI L M,HUANG X,WANG B,et al. Research and development of non-burning titanium alloys[J]. Materials Review,2003(5):21-23.)[60]黃旭,曹春曉,王寶,等. 阻燃鈦合金Alloy C[J]. 航空製造工程,1997(6):24-26.(HUANG X,CAO C X,WANG B,et al. Burn resistant titanium alloys Alloy C[J]. Aviation Maintenance &Engineering,1997(6):24-26.)[61]賴運金,張平祥,辛社偉,等. 國內阻燃鈦合金工程化技術研究進展 [J]. 稀有金屬材料與工程,2015,44(8):2067-2073.(LAI Y J,ZHANG P X,XIN S W,et al. Research progress on engineered technology of burn-resistant titanium alloys in China[J]. Rare Metal Materials And Engineering,2015,44(8):2067-2073.)[62]孫歡迎,趙軍,劉翊安,等. 一種新型低成本阻燃鈦合金的微觀組織與力學性能[J]. 稀有金屬材料與工程,2019,48(6):1892-1896.(SUN H Y,ZHAO J,LIU Y A,et al. Microstructure and mechanical properties of a new type burn resistant titanium alloy with lower cost[J]. Rare Metal Materials And Engineering,2019,48(6):1892-1896.)[63]張學敏. Ti40阻燃合金高溫變形機理及開裂準則研究[D]. 西安:西北工業大學,2007.(ZHANG X M.High temperature deformation mechanism and fracture criteria of Ti40 burn resistant alloy[D].Xian:Northwestern Polytechnical University,2007.)[64]賴運金,張平祥,張賽飛,等. 阻燃鈦合金Ti40的熱物理性能及力學性能 [J]. 航空材料學報,2017,37(5):22-28.(LAI Y J,ZHANG P X,ZHANG S F,et al. Thermophysical properties and mechanical properties of burn-resistant titanium alloy Ti40[J]. Journal of Aeronautical Materials,2017,37(5):22-28.)[65]賴運金,張維,王曉亮,等. WSTi3515S阻燃鈦合金的工程化製備及力學性能研究[J]. 鈦工業進展,2015,32(6):13-18.(LAI Y J,ZHAG W,WANG X L,et al. Industrial manufacturing and mechanical properties of WSTi3515S burnresistant titanium alloy[J]. Titanium Industry Progress,2015,32(6):13-18.)[66]楊雯清. Ti-14Cu阻燃合金燃燒機理研究[D].西安:長安大學,2018.(YANG W Q. Research on burning mechanism of Ti-Cu alloy[D].Xi』an:Chang』an University,2018.)[67]CHEN Y,YANG W,BO A,et al. Underlying burning resistant mechanisms for titanium alloy[J]. Materials &Design,2018,156:588-595.[68]GALINDO-NAVA E I, RIVERA-DÍAZ-DELCASTILLO P E J. Thermostastitical modelling of deformation twinning in HCP metals[J]. International Journal of Plasticity,2014,55:25-42.[69]黃朝文,葛鵬,趙永慶,等. 低溫鈦合金的研究進展[J].稀有金屬材料與工程,2016,45(1):254-260.(HUANG C W,GE P,ZHAO Y Q,et al. Research progress in titanium alloys at cryogenic temperatures[J].Rare Metal Materals and Engineering,2016,45(1):254-260.)[70]劉偉,杜宇. 低溫鈦合金的研究現狀[J]. 稀有金屬快報,2007(9):6-10.(LIU W,DU Y. Research situation of the cryogenic titanium alloy[J]. Materials China,2007(9):6-10.)[71]曲玉福,袁曉光,謝華生,等. 低溫鈦合金的研究應用現狀及發展趨勢[J]. 機械工程與自動化,2009(1):189-191.(QU Y F,YUAN X G,XIE H S,et al. Research and application development of titanium alloys at cryogenic temperature[J]. Mechanical Engineering & Automation,2009(1):189-191.)[72]鬱炎,蔣鵬,李士凱. 國內外低溫鈦合金的開發與應用現狀 [J]. 材料開發與應用,2014,29(6):118-122.(YU Y,JIANG P,LI S K. Recent advances in the development and application of cryogenic titanium alloys[J].Development and Application of Materials, 2014,29(6):118-122.)[73]範承亮. 顯微組織和間隙元素對近α鈦合金低溫塑韌性的影響[D]. 西安:西安建築科技大學,2004.(FAN C L. On The effective of microstructure and interstitial content on plasticity and toughness of near α titanium alloy at cryogenic temperature[D]. Xi』an:Xi』an University of Architecture & Technology,2004)[74]張智. CT20鈦合金的組織與性能控制[D]. 西安:西安建築科技大學,2011.(ZHANG Z. 2011. The control on microstructure and properties of CT20 titanium[D]. Xi』an:Xi'an University of Architecture & Technology,2011.)[75]劉志丹. TA7和TB2及TC4鈦合金低溫準靜態拉伸行為研究[D]. 哈爾濱:哈爾濱工業大學,2019.(LIU Z D. Quasi-static tensile behavior of TA7 TB2 and TC4 titanium alloys at low temperatures[D]. Harbin:Harbin Institute of Technology,2019.)[76]曾立英,鄧炬,白保良,等. 連續纖維增強鈦基複合材料研究概況 [J]. 稀有金屬材料與工程,2000,29(3):211-215.(LIYING ZENG,JU DENG,BAOLIANG BAI,et al. A review of continuous fiber reinforced titanium alloy matrix composites[J]. Rare Metal Materials and Engineering,2000,29(3):211-215.)[77]陸盤金,周盛年. 國外連續纖維增強鈦基複合材料的研究與發展 [J]. 航空製造工程,1994(6):35-37.(LU P J,ZHOU S N. Research and development of continuous fiber reinforced titanium matrix composites abroad[J]. Aviation Maintenance & Engineering,1994(6):35-37.)[78]曹秀中,韓秀全,趙冰,等. SiC纖維增強鈦基複合材料研究現狀與展望[J]. 航空製造技術,2014(22):109-112+115.(CAO X Z,HAN X Q,ZHAO B,et al. Research and prospect of SiC fiber-reinforced titanium matrix composites[J]. Aeronautical Manufacturing Technology,2014(22):109-112+115.)[79]高昌前,趙冰,韓秀全,等. 連續SiC纖維增強鈦基複合材料高溫變形研究[J]. 航空製造技術,2015(增刊 2):36-38+42.(GAO C Q,ZHAO B,HAN X Q,et al. Deformation study of SiC fiber reinforced titanium composites at high temperature[J]. Aeronautical Manufacturing Technology,2015(Suppl 2):36-38+42.)[80]王玉敏,張國興,張旭,等. 連續SiC纖維增強鈦基複合材料研究進展 [J]. 金屬學報,2016,52(10):1153-1170.(WANG Y M,ZHANG G X,ZHANG X,et al.Advances In SiC fiber reinforced titanium matrix composites[J]. Acta Metallurgica Sinica, 2016, 52( 10) :1153-1170.)[81]趙冰,姜波,高志勇,等. 連續SiC纖維增強鈦基複合材料橫向強度分析 [J]. 稀有金屬,2013,37(3):372-377.(ZHAO B,JIANG B,GAO Z Y,et al. Transverse strength analysis of continuous SiC fiber reinforced titanium matrix composites[J]. Chinese Journal of Rare Metals,2013,37(3):372-377.)[82]呂維潔. 原位自生鈦基複合材料研究綜述[J]. 中國材料進展,2010,29(4):41-48,47.(LU W J. An Overview on the research of in-situ titanium matrix composites[J]. Materials China, 2010,29(4):41-48,47.)[83]LAGOS M A,AGOTE I,ATXAGA G,et al. Fabrication and characterization of titanium matrix composites obtained using a combination of self propagating high temperature synthesis and spark plasma sintering[J].Materials Science and Engineering:A,2016,655:44-49.[84]XIANG J,HAN Y,LE J,et al. Effect of temperature on microstructure and mechanical properties of ECAPed(TiB+La2O3)/Ti-6Al-4V composites[J]. Materials Characterization,2018,146:149-158.[85]CAI C,SONG B,QIU C,et al. Hot isostatic pressing of in-situ TiB/Ti-6Al-4V composites with novel reinforcement architecture,enhanced hardness and elevated tribological properties[J]. Journal of Alloys and Compounds,2017,710:364-374.[86]LIU P,HAN Y,QIU P,et al. Isothermal deformation and spheroidization mechanism of(TiB+La2O3) /Ti composites with different initial structures[J]. Materials Characterization,2018,146:15-24.[87]ZHANG B,ZHONG Z,YE J,et al. Microstructure and anti-penetration performance of continuous gradient Ti/TiB-TiB2 composite fabricated by spark plasma sintering combined with tape casting[J]. Ceramics International,2020,46(7):9957-9961.[88]YANG J,XIAO S,CHEN Y,et al. Microstructure evolution during forging deformation of(TiB+TiC+Y2O3)/α-Ti composite:DRX and globularization behavior[J]. Journal of Alloys and Compounds,2020:827.[89]QIU P,LI H,SUN X,et al. Reinforcements stimulated dynamic recrystallization behavior and tensile properties of extruded( TiB + TiC + La2O3) /Ti6Al4V composites[J]. Journal of Alloys and Compounds,2017,699:874-881.[90]SUN X,LI H,HAN Y,et al. Compressive response and microstructural evolution of bimodal sized particulates reinforced( TiB+La2O3) /Ti composites[J]. Journal of Alloys and Compounds,2018,732:524-535.[91]JIAO Y,HUANG L J,GENG L,et al. Strengthening and plasticity improvement mechanisms of titanium matrix composites with two-scale network microstructure[J].Powder Technology,2019,356:980-989.[92]ZHANG F,WANG J,LIU T,et al. Enhanced mechanical properties of few-layer graphene reinforced titanium alloy matrix nanocomposites with a network architecture[J]. Materials & Design,2020:186.[93]ZHANG F,LIU T. Nanodiamonds reinforced titanium matrix nanocomposites with network architecture[J].Composites Part B,2019,165:143-154.▌聲明:本平臺對分享、轉載的內容及觀點持中立態度,不對所包含內容的準確性及可靠性提供任何明示或暗示的保證,僅供讀者參考,本公眾平臺將不承擔任何責任。 以上聲明內容的最終解釋權歸本公眾平臺所有。圖文來源網絡,如有侵權,請聯繫小編刪除,聯繫人:media@aeroinno.com