等差數列與等比數列判定,利用數列基本性質,高考重點考題

2021-01-11 月亮光的聲音

數列做為我們高中數學一塊非常重要的內容,並且數列的內容常常是利用各種公式的變換來求解數列的得數或是判定數列的性質,數列的考察往往比較的綜合,並且也有一定的難度,數列常常還可以作為載體,與函數解析式結合在一起進行考察,所以這也成了我們高考考題中的大熱題目,因為通過一道題便可以考察很多的數學知識點,由於這類型題目的難度比較大,比較考察考生對於數學基礎的掌握程度,以及敏銳的數學觀察力,所以對於考生來說這也是一道令人頭疼的題目,並且數列的題目計算量也比較大,所以考生面對這些題目的時候常常會不知所措,無從下手,今天我就給大家具體講解一下關於這類型題目的做法,給大家提供一些獨家知識乾貨!

關於數列的知識我們一般看到的題目考察形式就是判定函數的數列關係,或者要求求出數列的通項公式,我們在判定數列的性質的時候通常採取的方法就是將後一項的通項公式用n+1表示出來,前一項的通項公式用n表示出來,然後根據題目中所要求的條件,進行兩個函數的相除或相減,如果可以得出一個常數,那麼我們就基本可以判定函數的性質。

當然也存在比較難的情況,數列的式子中有時候考察我們在原有的數列基礎上加減常數或者加減一個含有未知數的式子,讓我們判定這個數列的性質,是等差數列還是等比數列,當遇到這種情況的時候,我們有兩種選擇,一種是直接寫公式進行演算,另一種就是將數列分分開來求解,將前半部分進行討論然後再對後半部分進行討論。

數列題目還有很大一部分是考察數列的求和公式的,這部分常常是在我們第一步分求解完畢之後,得到了數列的性質、首項值和等差等比值之後利用數列的求和公式對數列進行求和,所以我們一定要將等差等比數列的求和公式爛熟於心,在做題的時候不會因為沒有將公式記住而導致丟分。

根據上述所給的例題,題目給了我們數列滿足的關係式,並且給了我們數列首項的值,第一問是要我們求證函數是一個等比數列,這道題我們就可以整體處理,將n+1和n的式子都寫出來,然後用n+1的式子除以n的式子,從而得到比值為一個固定的常數2,所以我們就可以判定出這個數列的性質為等比數列。

在解決第二問的時候,我們就相對來說輕鬆一些了,因為我們在上一問的時候就求出來了等比數列的比值為2,並且我們還知道了數列的首項值為1,這個時候我們就可以利用等比數列的求和公式來將等比數列前n項的和求出來了,但是這一步非常考驗我們的計算能力,我們還是不能夠掉以輕心,覺得萬事大吉了,一定要仔仔細細的將題目算到最後一步才叫成功。

在高中的所有科目中,其實數學是一門難度比較大的學科,相當大一部分同學對於數學這門學科是頭疼的狀態,甚至有的同學會覺得自己就是腦子笨,根本不適合學數學,其實這都是一些比較錯誤的觀念和認知,數學學不好多半是因為不能夠熟練的掌握所有的知識點和解題方法,並且不能夠常常的利用課下的時間對知識點進行複習鞏固,使得對知識點非常的生疏,我們一定要多練習,也希望大家,能在未來的高考,金榜題名

相關焦點

  • 等差數列等比數列前n項和公式總結
    高中數列在教師資格和教師招聘考試中都是非常重要的考點,關於數列的考題雖然表面看去變化多樣,但看其本質,可歸結為兩大類:求一個數列的通項an,求一個數列的前n項和,而解決這兩類題都少不了等差數列以及等比數列的求和公式。這篇文章就針對等差和等比數列求和公式給出推導和證明過程。
  • 等比數列解題技巧—實戰篇
    題型四、等比數列的性質無論是等比數列還是等差數列,在考查性質時都要特別留意各項腳標之間的關係,而且要把等差數列和等比數列的性質區分開,不要搞混淆了。等差數列是將兩項求和,等比數列是將兩項求積。分析:等比數列的性質可以類比等差數列來學習,這樣能夠有效地防止將兩個數列的性質搞混淆。
  • 高中數學,等差、等比數列混合題,常規題型更要熟練掌握
    等差、等比數列混合題型屬於常規題型,解題思路基本相同:按照其中一種數列的通項公式展開已知中的各項,再根據另一種數列的性質列出等式即可;至於使用哪一種數列的通項公式展開已知中的各項,要根據實際題意以及計算方便與否來決定。
  • 高考數學壓軸系列四 數列
    每日名言陸九淵:人之知識,若登梯然,進一級,則所見愈廣數列的學習分為兩個專題。第二部分數列高考中的數列以等差、等比數列的基本知識為載體,融函數、方程、不等式等問題於一體,基礎題主要考查定義和基本性質,壓軸題注重考查創新意識和綜合解決問題的能力,有些試題突出選拔功能。文科數列壓軸題的特點是以等差、等比數列或簡單的遞推數列為載體,分步設間,層層遞進,由淺入深,考查等差、等比數列的概念、通項公式、求和公式以及簡單的不等式問題。
  • 高考數學之數列熱點題型方法解析
    熱點一 等差數列、等比數列的綜合問題解決等差、等比數列的綜合問題時,重點在於讀懂題意,靈活利用等差、等比數列的定義、通項公式及前n項和公式解決問題,求解這類問題要重視方程思想的應用.【類題通法】解決等差數列與等比數列的綜合問題,既要善於綜合運用等差數列與等比數列的相關知識求解,更要善於根據具體問題情境具體分析,尋找解題的突破口.
  • 吳國平:學會運用數學思想攻克等比數列相關知識內容
    昨天我們講了等差數列及其前n項和的相關知識內容,那麼今天我們就繼續講解數列另一塊重要知識內容,也就是等比數列及其前n項的和。等比數列可以說是數列的核心內容,自然也是高考必考的知識點之一。在高考數學中,跟等比數列相關的主要考點有:等比數列的基本運算與通項公式;等比數列的性質;等比數列的前n項和;等比數列的綜合應用等等。
  • 等比數列解題技巧—基礎知識篇
    等比數列解題技巧—基礎知識篇(更多資料和更詳細的例題解答和解題技巧,請關注+評論!如果對大家有幫助,可以轉發幫助更多學子!!!)等比數列和等差數列作為高中的兩大基本數列,在數列的學習中佔有很重要的地位,是學習其它數列的一個基礎。
  • 高中數學公式大全:等差數列、等比數列
    高中數學公式大全:等差數列、等比數列 2019-02-15 15:36 來源:新東方網編輯整理 作者:
  • 帶你一起探索數學世界,等差數列和等比數列的,求和運算方法分享
    在數學運算中,等差數列和等比數列的計算是最容易被搞混的,今天我來幫大家解決這個難題:分享一個快速進行等差數列和等比數列的求和計算的小妙招。一起來看一下吧。如何計算1+4+7+10+…+31+34——等差數列求和按一定次序排成一列的數被稱為數列。其中最具代表性的為等差數列。像這樣,相鄰兩項之差相等的數列即為等差數列。
  • 《等比數列》~試講稿~高中數學
    那像這樣的數列叫做等比數列。之前我們學習了等差數列,現在請同學們總結一下等比數列的概念吧,哪位同學來分享一下自己的成果呢?穿紅色衣服的女同學來說一下吧,這位同學也總結得非常到位啊,請坐。一般地,如果一個數列從第二項起,每一項與前一項的比值是一個常數項,那麼我們就說這種數列是等比數列。這個常數叫做等比數列的公比,公比用 q 來表示(q≠0)。
  • 出卷老師:高三數學等比數列+等差數列基礎過關練習,必考題型
    等差數列和等比數列是高中數學最為基礎的兩種數列類型了,許多複雜的數列壓軸題都是以這兩類題型作為基礎而改編的。如果說這些基礎內容都沒有理解的話,對於其他的難題就能難著手了。那麼,對於等差數列和等比數列,首先要記住它們的通項公式和定義,學會如何去求和。
  • 教資面試 | 高中數學試講—《等比數列》
    那像這樣的數列叫做等比數列。之前我們學習了等差數列,現在請同學們總結一下等比數列的概念吧,哪位同學來分享一下自己的成果呢?穿紅色衣服的女同學來說一下吧,這位同學也總結得非常到位啊,請坐。一般地,如果一個數列從第二項起,每一項與前一項的比值是一個常數項,那麼我們就說這種數列是等比數列。
  • 衝刺2019年高考數學,典型例題分析32:與等比數列有關的解答題
    已知數列{an}中,a1=2,且2an=an-1+1(n≥2,n∈N+).(I)求證:數列{an﹣1}是等比數列,並求出數列{an}的通項公式;(Ⅱ)設bn=n(an﹣1),數列{bn}的前n項和為Sn,求證:1≤Sn<4.
  • 等比數列的概念教學設計
    一、複習導入:(1)等差數列的定義;(2)等差數列的通項公式;(3)計算公差d的方法;(4)等差中項的定義及公式.通過動手實踐,讓學生直觀感受等比數列。三、新課講授:1.等比數列的定義一般地,如果一個數列從第2項起,每一項與它前一項的比都等於同一個常數,則這個數列叫做等比數列,這個常數就叫做等比數列的公比.公比通常用字母「q」表示.教師引導學生類比學習等差數列與等比數列的概念學習。引導學生嘗試類比學習的方法,培養學生自主學習的能力。
  • 衝刺19年高考數學,典型例題分析261:等比數列的題型講解
    典型例題分析1:在正項等比數列{an}中,a1008a1009=1/100,則lga1+lga2+…+lga2016=(  )A.2015B.2016C.﹣2015D.﹣2016解:由正項等比數列{an}的性質可得
  • 形如a(n+1)=(an)^2是什麼數列?只需一步它就能變成等比數列
    我們得出a(n+1)=(an)^2+an-1/4的目的是為了求出an通項公式,要想就出數列an通項公式,就要將an和a(n+1)的關係向等比數列或者等差數列的形式靠近,才能利用我們學過的等比數列和等差數列的知識點,將其數列an通項公式求解出來。所以要將a(n+1)=(an)^2+an-1/4變形向等比數列或者等差數列靠攏。
  • 高考六大題型|數列解答題詳細解題模板,快收藏起來留著備用吧
    引言:高考解答題共有六道,其中第17題考查的是三角函數或是數列交替出現。下面主要探討下數列解答題主要考查內容,通過幾道例題展示解題步驟,最後歸納出解決此類題型的解題模板。一:高考對數列解答題的考查主要是兩塊內容:1、求數列的通項公式,是高考的熱點問題之一,幾乎每年必考.主要是利用一個數列的遞推關係求數列的通項公式,即給出與一個數列相關的項或相關的若干項的和的一個關係式,求出該數列的通項公式。
  • 初中數學公式:等比數列公式
    中考網整理了關於初中數學公式:等比數列公式,希望對同學們有所幫助,僅供參考。   如果一個數列從第2項起,每一項與它的前一項的比等於同一個常數,這個數列就叫做等比數列。這個常數叫做等比數列的公比,公比通常用字母q表示。
  • 練會這25道小題,等差等比數列各種計算再也難不住你,第1部分
    練會這25道小題,等差等比數列各種計算再也難不住你,第1部分。等差等比數列的計算有很強的技巧性,這些技巧實際上都是根據等差等比數列獨特的特點得來的,只有熟練使用這些計算技巧,你才能在各種數列計算面前做到遊刃有餘。
  • 高考題:數列「an」首項為1,Sn數列「an」前n項和,Sn+1=qSn+1,n∈N*
    (Ⅰ)若2a2,a3,a2+2成等差數列,求an的通項公式;下面解出:解:(Ⅰ)∵Sn+1=qSn+1 ①,∴當n≥2時,Sn=qSn-1+1 ②,兩式相加你可得an+1=qan,即從第二項開始,數列{an}為等比數列,公比為q。當n=1時,∵數列{an}的首項為1,∴a1+a2=S2=qa1+1,∴a2=q=a1q。