生物學界最大的謎團之一被 AI 破解

2020-12-02 騰訊網

來源:機器之心

生物學界最大的謎團之一,蛋白質摺疊問題被 AI 破解了。

CASP14 組織者、年近七旬的 UC Davis 科學家 Andriy Kryshtafovych 在大會上感嘆道,I wasn't sure that I would live long enough to see this(我活久見了) [ 1 ] 。

11 月 30 日,一條重磅消息引發了科技界所有人的關注:谷歌旗下人工智慧技術公司 DeepMind 提出的深度學習算法「Alphafold」破解了出現五十年之久的蛋白質分子摺疊問題。

最新一代算法 Alphafold 2,現在已經擁有了預測蛋白質 3D 摺疊形狀的能力,這一複雜的過程對於人們理解生命形成的機制至關重要。

DeepMind 重大科研突破的消息一出即被《Nature》、《Science》等科學雜誌爭相報導,新成果也立刻獲得了桑達爾 · 皮查伊、伊隆 · 馬斯克等人的祝賀。

科學家們表示,Alphafold 的突破性研究成果將幫助科研人員弄清引發某些疾病的機制,並為設計藥物、農作物增產,以及可降解塑料的「超級酶」研發鋪平道路。

「這是該研究領域激動人心的一刻,」DeepMind 創始人、執行長德米斯 · 哈薩比斯說道。「這些算法今天已經足夠成熟強大,足以被應用於真正具有挑戰性的科學問題上了。」

蛋白質對於生命至關重要,它們是由胺基酸鏈組成的大型複雜分子,其作用取決於自身獨特的 3D 結構。弄清蛋白質摺疊成何種形狀被稱為「蛋白質摺疊問題」。在過去 50 年裡,蛋白質摺疊一直是生物學領域的重大挑戰。

DeepMind 的 AlphaFold 讓人類在這一問題上取得了重要突破。在今年的國際蛋白質結構預測競賽 CASP 中,DeepMind 開發的 AlphaFold 最新版本擊敗了其他選手,在準確性方面比肩人類實驗結果,被認為是蛋白質摺疊問題的解決方案。這一突破證明了 AI 對於科學發現,尤其是基礎科學研究的影響。

在兩年一次的 CASP 競賽中,各組爭先預測蛋白質的 3D 結構。今年,AlphaFold 擊敗了所有其他小組,並在準確性方面與實驗結果相匹配。

對於不熟悉生物領域的人來說,CASP 的大名可能有些陌生—— CASP 全稱 The Critical Assessment of protein Structure Prediction,旨在對蛋白質結構預測進行評估,被譽為蛋白質結構預測的奧林匹克競賽。CASP 從 1994 年開始舉辦,每兩年一屆,目前正在進行的一屆是 11 月 30 日開始的 CASP14。

而 DeepMind 這一突破有什麼影響?

用哥倫比亞大學計算生物學家 Mohammed AlQuraishi 在 Nature 文章中的話來說,「可以說這將對蛋白質結構預測領域造成極大影響。我懷疑許多人會離開該領域,因為核心問題已經解決。這是一流的科學突破,是我一生中最重要的科學成果之一。」

蛋白質摺疊問題

蛋白質的形狀與它的功能密切相關,而預測蛋白質結構對於理解其功能和工作原理至關重要。很多困擾全人類的重大問題(如尋找分解工業廢料的酶)基本上都與蛋白質及其扮演的角色有關。

多年以來,蛋白質結構一直是熱門的研究話題,研究者使用核磁共振、X 射線、冷凍電鏡等一系列實驗技術來檢測和確定蛋白質結構。但這些方法往往依賴大量試錯和昂貴的設備,每種結構的研究都要花數年時間。

1972 年,美國科學家克 Christian Anfinsen 因「對核糖核酸酶的研究,特別是對其胺基酸序列與生物活性構象之間聯繫的研究」獲得諾貝爾化學獎。在頒獎禮上,他提出了一個著名的假設:從理論上來說,蛋白質的胺基酸序列應該可以完全決定其結構。這一假設引發了長達五十年的探索,即僅僅基於蛋白質的一維胺基酸序列計算出其三維結構。

但這一思路的挑戰在於,在形成三維結構之前,蛋白質的理論摺疊方式是一個天文數字。1969 年,Cyrus Levinthal 指出,如果使用蠻力計算的方式來枚舉一種蛋白質可能存在的構象,要花費的時間甚至比宇宙的年齡還要長。Levinthal 估計,一種蛋白質大約存在 10^300 種可能構象。但在自然界中,蛋白質會自發摺疊,有些只需幾毫秒,這被稱為 Levinthal 悖論。

CASP 14 比賽最新結果:AlphaFold 中位 GDT 高達 92.4

CASP 競賽由 John Moult 和 Krzysztof Fidelis 兩位教授於 1994 年創立,每兩年進行一次盲審,以促進蛋白質結構預測方面的新 SOTA 研究。

一直以來,CASP 選擇近期才經過實驗確定的蛋白質結構,作為參賽團隊測試其蛋白質結構預測方法的目標(有些結構即使在評估時仍然處於待確定狀態)。這些蛋白質結構不會事先公布,參賽者也必須對其結構進行盲測,最後將預測結果與實驗數據進行對比。正是基於這種嚴苛的評估原則,CASP 一直被稱為預測技術評估方面的「黃金標準」。

CASP 衡量預測準確率的主要指標是 GDT(Global Distance Test),範圍從 0 到 100,可以理解為預測的胺基酸殘基在正確位置閾值距離內的百分比。John Moult 教授表示,GDT 分數在 90 分左右,即可視為對人類實驗方法具備競爭力。

在剛剛公布的第 14 屆 CASP 評估結果中,DeepMind 的最新 AlphaFold 系統在所有預測目標中的中位 GDT 達到 92.4,意味其平均誤差大概為 1.6 埃(Angstrom),相當於一個原子的寬度(或 0.1 納米)。即使在難度最高的自由建模類別中,AlphaFold 的中位 GDT 也達到了 87.0。

歷屆 CASP 競賽自由建模類別中預測準確率中位數的提升情況,度量指標為 BEST-OF-5 GDT。

CASP 競賽自由建模類別中的兩個目標蛋白質示例。AlphaFold 能夠預測出高度準確的蛋白質結構。

這些令人振奮的結果開啟了生物學家使用計算結構預測作為科研主要工具的時代。DeepMind 提出的方法對於某些重要的蛋白質類別尤其有用,例如膜蛋白(membrane protein)。膜蛋白很難結晶,因此很難通過實驗方法來確定其結構。

該計算工作代表了在蛋白質摺疊這一具備 50 年歷史的生物學問題上的驚人進展,比該領域人士成功預測蛋白質摺疊結構早了幾十年。我們將很興奮,它能從多個方面對生物學研究帶來基礎性改變。—— Venki Ramakrishnan 教授(諾貝爾獎得主,英國皇家學會會長)

DeepMind 這樣解決蛋白質摺疊問題

2018 年,DeepMind 團隊使用初始版 AlphaFold 參加 CASP13 比賽,取得了最高的準確率。之後,DeepMind 將 CASP13 方法和相關代碼一併發表在 Nature 上。而現在,DeepMind 團隊開發出新的深度學習架構,並使用該架構參加 CASP14 比賽,達到了空前的準確率水平。這些方法從生物學、物理學、機器學習,以及過去半個世紀眾多科學家在蛋白質摺疊領域的工作中汲取靈感。

我們可以把蛋白質摺疊看作一個「空間圖」,節點表示殘基(residue),邊則將殘基緊密連接起來。這個空間圖對於理解蛋白質內部的物理交互及其演化史至關重要。對於在 CASP14 比賽中使用的最新版 AlphaFold,DeepMind 團隊創建了一個基於注意力的神經網絡系統,並用端到端的方式進行訓練,以理解圖結構,同時基於其構建的隱式圖執行推理。該方法使用進化相關序列、多序列比對(MSA)和胺基酸殘基對的表示來細化該圖。

通過迭代這一過程,該系統能夠較強地預測蛋白質的底層物理結構,並在幾天內確定高度準確的結構。此外,AlphaFold 還能使用內部置信度度量指標判斷預測的每個蛋白質結構中哪一部分比較可靠。

DeepMind 團隊在公開數據上訓練這一系統,這些數據來自蛋白質結構資料庫(PDB)和包含未知結構蛋白質序列的大型資料庫,共包括約 170,000 個蛋白質結構。該系統使用約 128 個 TPUv3 內核(相當於 100-200 個 GPU)運行數周,與現今機器學習領域出現的大型 SOTA 模型相比,該系統所用算力相對較少。

此外,DeepMind 團隊透露,他們準備在適當的時候將這一 AlphaFold 新系統相關論文提交至同行評審期刊。

AlphaFold 主要神經網絡模型架構概覽。該模型基於進化相關的蛋白質序列和胺基酸殘基對運行,迭代地在二者的表示之間傳遞信息,從而生成蛋白質結構。

對現實世界的潛在影響

「讓 AI 突破幫助人們進一步理解基礎科學問題」,經過 4 年的研究攻關,現在 AlphaFold 正在逐步實現 DeepMind 初創時的願景,在藥物設計和環境可持續性等領域都產生了重要的影響。

馬克斯 · 普朗克演化生物學研究所所長,CASP 評估員 Andrei Lupas 教授表示:「AlphaFold 的精確模型讓我們解決了近十年來被困擾的蛋白質結構,重新啟動關於信號如何跨細胞膜傳輸的研究。」

DeepMind 表示願與其他研究者合作,以進一步了解 AlphaFold 在未來幾年的潛力。除了作用於經過同行評審的論文以外,DeepMind 還在探索如何以最佳的可擴展方式為系統提供更廣泛的訪問可能。

同時,DeepMind 的研究者還研究了蛋白質結構預測如何幫助人們理解一些特殊的疾病。例如,通過幫助識別存在故障的蛋白質,並推斷其相互作用的方式,來理解一些疾病的原理。這些信息能夠讓藥物開發更加精確,從而補充現有的實驗方法,並更快找到更有希望的治療方法。

AlphaFold 是十分卓越的,它在預測結構蛋白質的速度和精度上有著驚人的表現。這一飛躍證明了計算方法對於生物學中的轉換研究,加速藥物研發過程都具有廣闊的前景。

除了加速對已知疾病的了解,AlphaFold 還具備很多令人興奮的技術潛力:探索數億個目前還沒有模型的數億蛋白質,以及未知生物的廣闊領域。由於 DNA 指定了構成蛋白質結構的胺基酸序列,基因組學革命使大規模閱讀自然界的蛋白質序列成為可能——在通用蛋白質資料庫(UniProt)中有 1.8 億個蛋白質序列。相比之下,考慮到從序列到結構所需的實驗工作,蛋白質資料庫(PDB)中只有大約 170000 個蛋白質結構。在未確定的蛋白質中可能有一些新的和未確定的功能——就像望遠鏡幫助人類更深入的觀察未知宇宙一樣,像 AlphaFold 這樣的技術可以幫助找到未確定的蛋白質結構。

開創新的可能

AlphaFold 是 DeepMind 迄今為止取得的最重要進展之一,但隨著後續科學研究的開展,依然有很多問題尚待解決。DeepMind 預測的結構並非全部都是完美的。還有很多要學習的地方,包括多蛋白如何形成複合體,如何與 DNA、RNA 或者小分子交互,以及如何確定所有胺基酸側鏈的精確位置。此外,在與他方合作的過程中,還需要學習如何以最好的方式將這些科學發現應用在新藥開發以及環境管理方式等諸多方面。

對於所有致力於科學領域中計算和機器學習方法的人而言,像 AlphaFold 這樣的系統彰顯了 AI 作為基礎探索輔助工具的驚人潛力。正如 50 年前 Anfinsen 提出的遠超當時科研能力所及的挑戰一樣,這個世界依然有諸多未知的方面。

DeepMind 取得的這一進展令人們更加堅信,AI 將成為人類擴展科學知識邊界的最有用工具之一,同時也期待未來多年的艱苦工作能夠帶來更偉大的發現。

相關焦點

  • 生物學界最大的謎團之一被AI破解,活久見?
    11月30日,一條重磅消息引發了科技界所有人的關注:谷歌旗下人工智慧技術公司DeepMind提出的深度學習算法「Alphafold」破解了出現五十年之久的蛋白質分子摺疊問題。這是一流的科學突破,是我一生中最重要的科學成果之一。」蛋白質摺疊問題蛋白質的形狀與它的功能密切相關,而預測蛋白質結構對於理解其功能和工作原理至關重要。很多困擾全人類的重大問題基本上都與蛋白質及其扮演的角色有關。
  • 生物學界最大的謎團之一,蛋白質摺疊問題被 AI 破解了.
    破解了出現五十年之久的蛋白質分子摺疊問題。最新一代算法 Alphafold 2,現在已經擁有了預測蛋白質 3D 摺疊形狀的能力,這一複雜的過程對於人們理解生命形成的機制至關重要。DeepMind 重大科研突破的消息一出即被《Nature》、《Science》等科學雜誌爭相報導,新成果也立刻獲得了桑達爾 · 皮查伊、伊隆 · 馬斯克等人的祝賀。
  • 蛋白質3D結構可用AI解析 生物學界最大的挑戰有望破解
    圖片來源:DeepMind本報訊生物學界最大的挑戰之一——蛋白質三維結構解析如今有望被破解。藉由深度學習程序AlphaFold,谷歌旗下人工智慧公司DeepMind能夠精確預測蛋白質三維形狀。CASP的比賽規則之一是參賽者預測的蛋白質結構必須已經通過實驗驗證但未公開發表。預測出的結果會通過實驗方法進行匿名檢驗,二者相似度越高,得分也就越高。比賽中,DeepMind的AlphaFold將深度學習與張力控制算法結合,並應用於結構和遺傳數據,該深度學習網絡利用目前已知的170000種解析完畢的蛋白質結構進行了訓練。
  • 科學家成功製造出風暴湍流,或將能破解物理學中的最大謎團之一!
    湍流是一種無處不在的現象,也是物理學的最大謎團之一。德國奧爾登堡大學的一個研究小組,現在已經成功地在風能研究中心(ForWind)風洞中產生了逼真的風暴湍流。猛烈的暴風雨似乎經常會留下隨機的破壞:雖然一所房子的屋頂瓦片被吹走了,但鄰近的財產可能根本不會受損。
  • 通古斯大爆炸20世紀最大的謎團在21世紀被破解了
    通古斯大爆炸發生在1908年摧毀了西伯利亞地區8000萬棵樹木,炸平了1250平方公裡,相當於整個深圳市的面積,到今天112年過去了,爆炸的原因依舊是個謎團,但是在2020年2月份的時候,皇家天文學會審核一篇論文,揭開了這個世紀謎團的答案。
  • 科學家成功製造出風暴湍流,或將能破解物理學中的最大謎團之一
    湍流是一種無處不在的現象,也是物理學的最大謎團之一。德國奧爾登堡大學的一個研究小組,現在已經成功地在風能研究中心(ForWind)風洞中產生了逼真的風暴湍流。猛烈的暴風雨似乎經常會留下隨機的破壞:雖然一所房子的屋頂瓦片被吹走了,但鄰近的財產可能根本不會受損。
  • 科學家們「破解」分裂地球外殼並開始大陸運動的謎團
    來自大連工業大學、中國地質大學、香港大學、漢普頓大學和東北大學的中美研究人員相信,他們可能已經「破解」了地球殼如何分裂成15個板塊的這個數十億年來的謎團,從那時起,這些板塊一直控制著大陸的運動。研究人員強調說,「這些研究共同打破了地球和行星科學中最大的謎團之一:地球如何以及為什麼會從一個熔融的球體變成我們的板塊構造行星?」
  • 宇宙中的四大謎團,每破解一個,都可以讓人類實現巨大的飛躍
    浩瀚的宇宙有太多的謎團等著我們去破解,可是人類的科技實力有限,能夠探索的宇宙奧秘可以說極其稀少,我們現在對宇宙的認知可能連皮毛也算不上,而在眾多的宇宙謎團之中,有四大謎團一直困擾著人類,只要我們能夠破解任何一個,都可以讓人類實現巨大的飛躍,那麼是哪四大宇宙謎團呢?下面我們就一起去了解下。
  • 「世上最神秘天書」將被AI破解?AI本尊:顫抖吧人類!
    從此之後,人們就開始放飛自我,胡亂猜想了有人認為這本書根本就沒什麼意義,是世界上最大的騙局。大概寫這本書的人也只是想看看人類有多愚蠢。有人認為這是達文西又一個謎題。眾所周知,達文西若不是一個名畫家,他就可能成為科學家,發明家,醫學家,建造師.而且他的手稿都有各種各樣的化名。
  • AI系統攻破生物學界50多年重大難題
    美國時間 11 月 30 日,谷歌母公司 Alphabet 旗下人工智慧公司 DeepMind 公開宣布,生物學界 50 年來的重大難題——蛋白質摺疊預測,已被其成功攻克。Alphabet 旗下人工智慧公司 DeepMind 在預測蛋白質結構方面邁出了一大步。
  • 地球的最大謎團之一:這麼多水是從哪裡來的?
    這或許是地球的最大謎團之一。如果地球上的水分在不斷增加,那麼地球海平面上升,會不會也是它造成的後果之一?這就是另一個問題了。
  • 三個人類難以破解的科學謎團,每一個都讓科學家束手無策
    所以,很多的科學對於我們來說仍然是未知的,科學家也難以將它們破解。其中有三個人類難以破解的科學謎團,每一個都讓科學家感到束手無策。一、宇宙起源之謎我們的宇宙是如何來的?要知道當我們走出地球看到浩瀚的時候,無從為宇宙的神奇而感到驚嘆。在感嘆宇宙神秘的同時,我們也在思考:宇宙是如何來的?
  • 地球的最大謎團之一:這麼多水是從哪裡來的?
    這或許是地球的最大謎團之一。    科學家們一開始認為,地球上的水,就是地球自己創造出來的。如果地球上的水分在不斷增加,那麼地球海平面上升,會不會也是它造成的後果之一?這就是另一個問題了。
  • AI能否解決語言學最古老的謎團之一?
    有很多東西可以將人類與其他物種區分開,但是最重要的之一是語言。以語言學家的身份將各種元素與實質上無限的組合在一起的能力是一個特徵,"過去常常被認為是現代人類的核心定義特徵,人類創造力的來源,文化豐富度和複雜的社會結構"諾姆·喬姆斯基曾經說過。
  • DeepMind AI系統攻破生物學界50多年重大難題
    美國時間 11 月 30 日,谷歌母公司 Alphabet 旗下人工智慧公司 DeepMind 公開宣布,生物學界 50 年來的重大難題——蛋白質摺疊預測,已被其成功攻克。Alphabet 旗下人工智慧公司 DeepMind 在預測蛋白質結構方面邁出了一大步。
  • 浙江龍遊石窟,被稱為「曠世奇窟」,至今無人破解其謎團
    自07年發布以來,盜墓筆記就受到了超過百萬讀者的狂熱追捧,作者南派三叔也憑藉著這本盜墓題材的小說,一躍而成全國知名的暢銷小說作家之一。即使大家沒有看過這本小說,但也一定對它有所耳聞吧。古代王侯將相的墓穴、不計其數的暗器機關,簡直就是盜墓者和墓穴設計者之間一場無形的博弈。
  • 歐豪演臥底闖入《黑白禁區》,破解犯罪謎團
    該劇以臥底警察淦天雷(歐豪飾)為切入點,講述了他長達10多年遊走在灰色地帶,以及如何在重創復甦後重啟人生,依靠一段丟失的記憶去破解犯罪謎團的故事。新京報記者 楊蓮潔編輯 佟娜 校對 李立軍
  • 世界未解之謎,世界上還未破解出來的謎團
    生活在這個世界,很多時候我們都被謎團給重重包圍,有些事情我們可以用科學的手法來驗證,來推斷,還有些事情我們可以查閱歷史資料,可是還剩下一些事情,既沒有歷史記載,用現代科學技術又不能推斷,就一直困擾著我們探索前行的腳步。
  • 物理學中最大謎團之一,首次證明:高溫超導體是不均勻的!
    本文參加百家號科學#了不起的基礎科學#系列徵文高溫超導是物理學中最大的謎團之一,LION的物理學家米蘭·艾倫的研究小組首次使用約瑟夫森掃描隧道顯微鏡對超導粒子的空間變化進行了成像,高溫超導體的一個神秘之處在於它可能是不均勻的,這意味著庫珀對的密度會導致超導性隨空間的變化
  • ...DeepMind AI解決生物學50年來重大挑戰,破解蛋白質分子摺疊問題
    蛋白質存在於我們世界中的所有有機物體及奧妙人體中,全新的AlphaFold 算法揭秘了生物學界50年來試圖破解蛋白質分子摺疊的難題,這項AI帶來的重大突破,將幫助科學家弄清某些困擾人們的疾病機制、加速找出新型流行病的具體原因(比如今年的全球新冠大流行),促進新藥設計、幫助農業增產、解析可有效降解廢棄物的嶄新成分、甚至探索為大氣減碳的全新解決方案。