2018中考數學知識點:三角形的重心公式證明

2020-12-02 中考網

  重心是三角形三邊中線的交點,三線交一點可用燕尾定理來證明。

  三角形的重心

  已知:△ABC中,D為BC中點,E為AC中點,AD與BE交於O,CO延長線交AB於F。求證:F為AB中點。

  證明:根據燕尾定理,S(△AOB)=S(△AOC),又S(△AOB)=S(△BOC),∴S(△AOC)=S(△BOC),再應用燕尾定理即得AF=BF,命題得證。

  重心的幾條性質:

  1.重心到頂點的距離與重心到對邊中點的距離之比為2:1。

  2.重心和三角形3個頂點組成的3個三角形面積相等。

  3.重心到三角形3個頂點距離的平方和最小。

  4.在平面直角坐標系中,重心的坐標是頂點坐標的算術平均,即其坐標為((X1+X2+X3)/3,(Y1+Y2+Y3)/3);空間直角坐標系——橫坐標:(X1+X2+X3)/3縱坐標:(Y1+Y2+Y3)/3豎坐標:(Z1+Z2+Z3)/3

  5.重心是三角形內到三邊距離之積最大的點。

  如果用塞瓦定理證,則極易證三條中線交於一點。

  如圖,在△ABC中,AD、BE、CF是中線

  則AF=FB,BD=DC,CE=EA

  ∵(AF/FB)*(BD/DC)*(CE/EA)=1

  ∴AD、BE、CF交於一點

  即三角形的三條中線交於一點

  其實考試中不會單獨的出現關於三角形的重心問題,而是綜合圖形知識要領,這就需要大家準確的分析了。

   歡迎使用手機、平板等行動裝置訪問中考網,2020中考一路陪伴同行!>>點擊查看

相關焦點

  • 2021年中考數學知識點之三角形的重心的性質
    中考網整理了關於2021年中考數學知識點之三角形的重心的性質,希望對同學們有所幫助,僅供參考。   1.重心到頂點的距離與重心到對邊中點的距離之比為2:1。   2.重心和三角形3個頂點組成的3個三角形面積相等。   3.重心到三角形3個頂點距離的平方和最小。
  • 2020年中考數學複習資料之圓的練習之三角形的重心
    中考網整理了關於2020年中考數學複習資料之圓的練習之三角形的重心,希望對同學們有所幫助,僅供參考。   G為△ABC的重心.若圓G分別與AC、BC相切,且與AB相交於兩點,則關於△ABC三邊長的大小關係,下列何者正確?
  • 三角形重心性質的證明
    三角形重心性質的證明三角形的重心是中學數學中重要知識點,初中平面幾何部分、高中立體幾何部分均有涉及
  • 2021年中考數學知識點:三角形面積公式
    中考網整理了關於2021年中考數學知識點:三角形面積公式,希望對同學們有所幫助,僅供參考。   由不在同一直線上的三條線段首尾順次連接所組成的封閉圖形叫做三角形。平面上三條直線或球面上三條弧線所圍成的圖形。三條直線所圍成的圖形叫平面三角形;三條弧線所圍成的圖形叫球面三角形,也叫三邊形。
  • 2018中考數學知識點:三角形的三邊關係定理及推論
    新一輪中考複習備考周期正式開始,中考網為各位初三考生整理了各學科的複習攻略,主要包括中考必考點、中考常考知識點、各科複習方法、考試答題技巧等內容,幫助各位考生梳理知識脈絡,理清做題思路,希望各位考生可以在考試中取得優異成績!下面是《2018中考數學知識點:三角形的三邊關係定理及推論》,僅供參考!
  • 中考數學複習指導:三角形的重心
    中考數學複習指導:三角形的重心   已知:△ABC中,D為BC中點,E為AC中點,AD與BE交於O,CO延長線交AB於F。求證:F為AB中點。   證明:根據燕尾定理,S(△AOB)=S(△AOC),又S(△AOB)=S(△BOC),∴S(△AOC)=S(△BOC),再應用燕尾定理即得AF=BF,命題得證。   重心的幾條性質:   1.重心和三角形3個頂點組成的3個三角形面積相等。   2.重心到三角形3個頂點距離的平方和最小。
  • 2021年中考數學知識點:等腰直角三角形面積公式
    中考網整理了關於2021年中考數學知識點:等腰直角三角形面積公式,希望對同學們有所幫助,僅供參考。   等腰直角三角形面積公式   =(1/2)*底*高   s=(1/2)*a*b*sinC(C為a,b的夾角)   底*高/2   底X高除2二分之一的(兩邊的長度X夾角的正弦)   s=1/2的周長*內切圓半徑   s=(1/2)*底*高   s=(1/2)
  • 2018初中數學公式之正弦定理公式證明
    新一輪中考複習備考周期正式開始,中考網為各位初三考生整理了中考五大必考學科的知識點,主要是對初中三年各學科知識點的梳理和細化,幫助各位考生理清知識脈絡,熟悉答題思路,希望各位考生可以在考試中取得優異成績!下面是《2018初中數學公式之正弦定理公式證明》,僅供參考!   步驟1.
  • 2018初中數學公式之勾股定理的證明和逆定理
    新一輪中考複習備考周期正式開始,中考網為各位初三考生整理了中考五大必考學科的知識點,主要是對初中三年各學科知識點的梳理和細化,幫助各位考生理清知識脈絡,熟悉答題思路,希望各位考生可以在考試中取得優異成績!下面是《2018初中數學公式之勾股定理的證明和逆定理》,僅供參考!
  • 2019中考數學知識點:直角三角形
    1、有一個角為90°的三角形,叫做直角三角形。   直角三角形可用Rt△表示,如直角三角形ABC寫作Rt△ABC。   性質5:射影定理   在直角三角形中,斜邊上的高線是兩直角邊在斜邊上的射影的比例中項,每條直角邊是它們在斜邊上的射影和斜邊的比例中項   ∠ACB=90°   CD⊥AB(4)ABCD=ACBC(可用面積來證明)   (5)直角三角形的外接圓的半徑R=1/2BC,   (6)直角三角形的內切圓的半徑
  • 2018中考數學知識點:三角函數的公式
    新一輪中考複習備考周期正式開始,中考網為各位初三考生整理了各學科的複習攻略,主要包括中考必考點、中考常考知識點、各科複習方法、考試答題技巧等內容,幫助各位考生梳理知識脈絡,理清做題思路,希望各位考生可以在考試中取得優異成績!下面是《2018中考數學知識點:三角函數的公式》,僅供參考!
  • 2018高考數學公式及知識點
    2018高考數學公式及知識點  一元二次方程的解  -b+√(b2-4ac)/2a-b-√(b2-4ac)/2a  根與係數的關係x1+x2=-b/ax1*x2=c/a註:韋達定理  判別式b2-4a=0註:方程有相等的兩實根  b2-4ac&
  • 2021年中考數學知識點:三角形
    中考網整理了關於2021年中考數學知識點:三角形,希望對同學們有所幫助,僅供參考。   易錯點1:三角形的概念以及三角形的角平分線,中線,高線的特徵與區別。   易錯點2:三角形三邊之間的不等關係,注意其中的「任何兩邊」。最短距離的方法。
  • 2018中考數學知識點:圓的計算公式
    新一輪中考複習備考周期正式開始,中考網為各位初三考生整理了各學科的複習攻略,主要包括中考必考點、中考常考知識點、各科複習方法、考試答題技巧等內容,幫助各位考生梳理知識脈絡,理清做題思路,希望各位考生可以在考試中取得優異成績!下面是《2018中考數學知識點:圓的計算公式》,僅供參考!
  • 2018中考數學知識點:兩點的距離公式和中點公式
    新一輪中考複習備考周期正式開始,中考網為各位初三考生整理了各學科的複習攻略,主要包括中考必考點、中考常考知識點、各科複習方法、考試答題技巧等內容,幫助各位考生梳理知識脈絡,理清做題思路,希望各位考生可以在考試中取得優異成績!下面是《2018中考數學知識點:兩點的距離公式和中點公式》,僅供參考!
  • 2018中考數學知識點:重點公式、定理、推論(4)
    75等腰梯形的兩條對角線相等   76等腰梯形判定定理在同一底上的兩個角相等的梯形是等腰梯形   77對角線相等的梯形是等腰梯形   78平行線等分線段定理如果一組平行線在一條直線上截得的線段相等,那麼在其他直線上截得的線段也相等   79推論1經過梯形一腰的中點與底平行的直線,必平分另一腰   80推論2經過三角形一邊的中點與另一邊平行的直線
  • 2018中考數學知識點:一次函數常用公式
    新一輪中考複習備考周期正式開始,中考網為各位初三考生整理了各學科的複習攻略,主要包括中考必考點、中考常考知識點、各科複習方法、考試答題技巧等內容,幫助各位考生梳理知識脈絡,理清做題思路,希望各位考生可以在考試中取得優異成績!下面是《2018中考數學知識點:一次函數常用公式》,僅供參考!
  • 數學中考知識點:必備公式
    數學中考知識點:必備公式   正弦定理a/sinA=b/sinB=c/sinC=2R註:其中R表示三角形的外接圓半徑   餘弦定理b2=a2+c2-2accosB註:角B是邊a和邊c的夾角   圓的標準方程(x-a)2+(y-b)2=r2註:(a,b)是圓心坐標
  • 2019年初中數學圓的練習之三角形的重心
    G為△ABC的重心.若圓G分別與AC、BC相切,且與AB相交於兩點,則關於△ABC三邊長的大小關係,下列何者正確?()   A.BCAC C.ABAC   分析:G為△ABC的重心,則△ABG面積=△BCG面積=△ACG面積,根據三角形的面積公式即可判斷.
  • 2018中考數學知識點:向量的有關概念和公式
    新一輪中考複習備考周期正式開始,中考網為各位初三考生整理了各學科的複習攻略,主要包括中考必考點、中考常考知識點、各科複習方法、考試答題技巧等內容,幫助各位考生梳理知識脈絡,理清做題思路,希望各位考生可以在考試中取得優異成績!下面是《2018中考數學知識點:向量的有關概念和公式》,僅供參考!