一個高性能帶隙基準電壓源的設計

2021-01-10 電子產品世界

摘 要:設計一種適用於標準CMOS工藝的帶隙基準電壓源。該電路採用一種新型二階曲率補償電路改善輸出電壓的溫度特性;採用高增益反饋迴路提高電路的電源電壓抑制能力。結果表明,電路溫度係數為3.3 ppm/℃,在電源電壓2.7~3.6 V範圍內輸出僅變化18μV左右。
關鍵詞:CMOS;帶隙基準電壓源;曲率補償;電源抑制比

本文引用地址:http://www.eepw.com.cn/article/181366.htm


0 引 言
基準電壓是集成電路設計中的一個重要部分,特別是在高精度電壓比較器、數據採集系統以及A/D和 D/A轉換器等中,基準電壓隨溫度和電源電壓波動而產生的變化將直接影響到整個系統的性能。因此,在高精度的應用場合,擁有一個具有低溫度係數、高電源電壓抑制的基準電壓是整個系統設計的前提。
傳統帶隙基準由於僅對電晶體基一射極電壓進行一階的溫度補償,忽略了曲率係數的影響,產生的基準電壓和溫度仍然有較大的相干性,所以輸出電壓溫度特性一般在20 ppm/℃以上,無法滿足高精度的需要。
基於以上的要求,在此設計一種適合高精度應用場合的基準電壓源。在傳統帶隙基準的基礎上利用工作在亞閾值區MOS管電流的指數特性,提出一種新型二階曲率補償方法。同時,為了儘可能減少電源電壓波動對基準電壓的影響,在設計中除了對帶隙電路的鏡相電流源採用cascode結構外還增加了高增益反饋迴路。在此,對電路原理進行了詳細的闡述,並針對版圖設計中應該的注意問題進行了說明,最後給出了後仿真結果。

l 電路設計
1.1 傳統帶隙基準分析
通常帶隙基準電壓是通過PTAT電壓和CTAT電壓相加來獲得的。由於雙極型電晶體的基一射極電壓Vbe呈負溫度係數,而偏置在相同電流下不同面積的雙極型電晶體的基一射極電壓之差呈正溫度係數,在兩者溫度係數相同的情況下將二者相加就得到一個與溫度無關的基準電壓。
傳統帶隙電路結構如圖1所示,其中Q2的發射極面積為Q1和Q3的m倍,流過Q1~Q3的電流相等,運算放大器工作在反饋狀態,以A,B兩點為輸入,驅動Q1和Q2的電流源,使A,B兩點穩定在近似相等的電壓上。

假設流過Q1的電流為J,有:


由於式(5)中的第一項具有負溫度係數,第二項具有正溫度係數,通過調整m值使兩項具有大小相同而方向相反的溫度係數,從而得到一個與溫度無關的電壓。理想情況下,輸出電壓與電源無關。
然而,標準工藝下電晶體基一射極電壓Vbe隨溫度的變化並非是純線性的,而且由於器件的非理想性,輸出電壓也會受到電源電壓波動的影響。其中,曲線隨溫度的變化主要取決於Vbe自身特性、集電極電流和電路中運放的失調電壓,Vbe自身特性對曲率的影響最為嚴重,所以要獲得高性能的帶隙基準電壓,就必須對曲線的曲率進行校正。在本設計中,針對Vbe的高階溫度特性進行了補償,並通過引用共源共柵和反饋電路來優化帶隙電路的電源電壓抑制特性。
1.2 高性能帶隙基準電路
該設計的完整電路如圖2所示,M6~M16電容C和電阻R4構成運算放大器;M1~M5為放大器提供所需要的偏置電流;基本帶隙部分由M13~M18, Q1~Q3以及R1和R2組成;M19,M20,R3構成二次曲率補償電路,M21~M28構成反饋放大反饋電路抑制電源波動,M29~M31完成電路的啟動功能;最後由pwr實現電路的開關狀態。


相關焦點

  • 帶隙電壓基準源的設計與分析
    摘要 介紹了基準源的發展和基本工作原理以及目前較常用的帶隙基準源電路結構。設計了一種基於Banba結構的基準源電路,重點對自啟動電路及放大電路部分進行了分析,得到並分析了輸出電壓與溫度的關係。
  • cmos帶隙基準電壓源設計
    打開APP cmos帶隙基準電壓源設計 發表於 2017-11-24 15:45:20 帶隙越大,電子由價帶被激發到導帶越難,本徵載流子濃度就越低,電導率也就越低   帶隙主要作為帶隙基準的簡稱,帶隙基準是所有基準電壓中最受歡迎的一種,由於其具有與電源電壓、工藝、溫度變化幾乎無關的突出優點,所以被廣泛地應用於高精度的比較器、A/D或D/A轉換器、LDO穩壓器以及其他許多模擬集成電路中。
  • 一種低電壓帶隙基準電壓源的設計
    0 引言 基準電壓是數模混合電路設計中一個不可缺少的參數,而帶隙基準電壓源又是產生這個電壓的最廣泛的解決方案。在大量手持設備應用的今天,低功耗的設計已成為現今電路設計的一大趨勢。
  • 一種高精度帶隙基準電壓源電路設計
    摘要:針對傳統CMOS帶隙電壓基準源電路電源電壓較高,基準電壓輸出範圍有限等問題,通過增加啟動電路,並採用共源共柵結構的PTAT電流產生電路,設計了一種高精度、低溫漂、與電源無關的具有穩定電壓輸出特性的帶隙電壓源。
  • 低成本多路輸出CMOS帶隙基準電壓源設計
    摘要:在傳統Brokaw帶隙基準源的基礎上,提出一種採用自偏置結構和共源共柵電流鏡的低成本多路基準電壓輸出的CMOS帶隙基準源結構,省去了一個放大器
  • 一種基於LDO穩壓器的帶隙基準電壓源設計
    摘要:設計了一種結構簡單的基於LDO穩壓器的帶隙基準電壓源。以BrokaW帶隙基準電壓源結構為基礎來進行設計。帶隙基準電壓源為LDO提供一個精確的參考電壓,是LDO系統設計關鍵模塊之一。基準電壓的精度直接影響輸出電壓的精度,因此高精度基準參考電壓電路是LDO穩壓器的的關鍵。1 LDO穩壓器工作原理圖1是一個典型LDO電路結構。該結構主要包括4個部分:誤差放大器、電阻反饋網絡、參考基準電壓和調整管。
  • 一種高精度低電源電壓帶隙基準源的設計
    輸出不隨溫度、電源電壓變化的基準電壓源,在模擬和混合集成電路中應用廣泛,特別是在高精度的場合,基準電壓源是整個系統設計的前提。 由於帶隙基準電壓源具有較低的溫度係數和高電源電壓抑制比,以及能與標準CMOS工藝相兼容等優點,因而成為常用的基準電壓源實現方式。文獻設計了具有溫度補償的傳統帶隙基準電路,但其電源電壓和溫度係數過高,且輸出電壓約在1.25 V,難以滿足低壓的要求。文獻設計了低電源電壓帶隙基準電路,但輸出基準電壓過高。文獻提出了解決方法,設計了低壓帶隙基準源,電路結構複雜。
  • 高精度CMOS帶隙基準源的設計
    在數/模轉換器、模/數轉換器等電路中,基準電壓的精度直接決定著這些電路的性能。這種基準應該與電源和工藝參數的關係很小,但是與溫度的關係是確定的。在大多數應用中,所要求的溫度關係通常分為與絕對溫度成正比(PTAT)和與溫度無關2種。  近年來有研究指出,當漏電流保持不變時,工作在弱反型區電晶體的柵源電壓隨著溫度升高而在一定範圍內近似線性降低。
  • 基於一階溫度補償技術的CMOS帶隙基準電壓源電路
    為滿足深亞微米級集成電路對低溫漂、低功耗電源電壓的需求,本文提出了一種在0.25mN阱CMOS工藝下,採用一階溫度補償技術設計的CMOS帶隙基準電壓源電路。電路核心部分由雙極電晶體構成,實現了VBE和VT的線性疊加,獲得近似零溫度係數的輸出電壓。
  • 如何選擇基準電壓源
    該標準就是基準電壓。對系統設計人員而言,問題不在於是否需要基準電壓源,而是使用何種基準電壓源?基準電壓源只是一個電路或電路元件,只要電路需要,它就能提供已知電位。這可能是幾分鐘、幾小時或幾年。如果產品需要採集真實世界的相關信息,例如電池電壓或電流、功耗、信號大小或特性、故障識別等,那麼必須將相關信號與一個標準進行比較。
  • 帶隙基準源電路的基本原理及仿真分析
    本文引用地址:http://www.eepw.com.cn/article/201809/389056.htm近年來有研究指出,當漏電流保持不變時,工作在弱反型區電晶體的柵源電壓隨著溫度升高而在一定範圍內近似線性降低。基於該特性,帶隙基準源所採用的基極-發射極結可以被工作在弱反型區的電晶體代替產生低溫度係數的基準源。
  • 一種高精度BiCMOS電流模帶隙基準源
    在模擬及數/模混合集成電路設計中,電壓基準是非常重要的電路模塊之一,而通過巧妙設計的帶隙電壓基準更是以其與電源電壓、工藝、溫度變化幾乎無關的特點,廣泛應用在LDO及DC-DC集成穩壓器、射頻電路、高精度A/
  • 一款高精度基準電壓源的設計方案
    本文引用地址:http://www.eepw.com.cn/article/201612/328287.htm  當今設計的基準電壓源大多數採用BJT帶隙基準電壓源結構,以及利用MOS電晶體的亞閾特性產生基準電壓源;然而,隨著深亞微米CMOS工藝的發展,尺寸按比例不斷縮小,對晶片面積的挑戰越來越嚴重,雙極型電晶體以及高精度電阻所佔用的面積則成為一個非常嚴重的問題。
  • 一種帶有軟啟動的精密CMOS帶隙基準設計
    引 言  帶隙基準是所有基準電壓中最受歡迎的一種,由於其具有與電源電壓、工藝、溫度變化幾乎無關的突出優點,所以被廣泛地應用於高精度的比較器、A/D或D/A轉換器、LDO穩壓器以及其他許多模擬集成電路中。帶隙基準的主要作用是在集成電路中提供穩定的參考電壓或參考電流,這就要求基準對電源電壓的變化和溫度的變化不敏感。
  • 一種採用二次曲率補償的帶隙基準源
    在A/D,D/A轉換器以及一些模擬和數字電路中,帶隙基準源起著至關重要的作用,它的溫度特性和抗噪聲能力直接決定了整體電路的精度和性能。因此,提高帶隙基準源的精度是十分重要的。 本文介紹帶曲率補償的帶隙基準源的原理,並將其與傳統帶隙基準源進行比較,突出其在溫度特性上的優點,並介紹一種運用曲率補償的帶隙基準源電路。
  • 帶曲率補償、工作電壓1.2 V、可調帶隙基準電壓電路
    ,可以設計出一個理想的零溫度係數基準。本設計所用到的三種帶隙基準電壓電路都是採用同一個運放。為得到較大的開環增益,該運放採用圖2所示兩級共柵共源結構,工作電壓2.5 V,輸入共模範圍:O.7~1.7 V,輸出電壓擺幅:0.45~2.35 v,運放開環增益85 dB,相位裕度55°,單位增益帶寬30 MHz,功耗0.645 mw。圖5為運放具體結構。
  • 一種新穎不帶電阻的基準電壓源電路設計
    當今設計的基準電壓源大多數採用BJT帶隙基準電壓源結構,以及利用MOS電晶體的亞閾特性產生基準電壓源;然而,隨著深亞微米CMOS工藝的發展,尺寸按比例不斷縮小,對晶片面積的挑戰越來越嚴重,雙極型電晶體以及高精度電阻所佔用的面積則成為一個非常嚴重的問題。
  • 一種用於高壓集成電路的基準電壓源設計
    最後基於CSMC 0.5μm 600V BCD工藝對設計進行仿真驗證。0 引言  在模擬集成電路中,基準作為一個最基本的單元,它的性能在很大的程度上影響著整個系統的性能[1]。在各種不同的系統中,對基準單元也有著不一樣的要求。比如,在一些低功耗的系統中,功耗是基準的關鍵指標。
  • 一種高PSR帶隙基準源的實現
    摘要:本文針對傳統基準電壓的低PSR以及低輸出電壓的問題,通過採用LDO與帶隙基準的混合設計,並且採用BCD工藝,得到了一種可以輸出較高參考電壓的高PSR(電源抑制)帶隙基準。
  • 周末隨想: 帶隙(能隙)基準電壓 Band Gap
    如果環境溫度發生變化,輸出電壓也要穩定,因此基準電壓也要具有溫度補償特性,控制器內部通常使用帶隙(能隙)基準電壓。什麼是帶隙基準電壓?先來看看PN結二極體的特性,二極體的電流ID為:基於PN結的基準電壓的輸出主要由矽的能隙電壓VGO來決定,因此其稱為能隙電壓基準,或帶隙電壓基準,Band Gap。PN結通二極體過一定的正向偏置電流ID時,VD隨溫度變化公式為: