從原理到製造再到應用,這篇文章終於把MEMS技術講透了!

2020-11-22 搜狐

原標題:從原理到製造再到應用,這篇文章終於把MEMS技術講透了!

來源:知乎,作者:阿hong

MEMS的快速發展基於相關技術的相對成熟,但是MEMS對於大部分人來說還是比較陌生的。對此,本文將詳細為你講述MEMS技術,帶你全方位的了解MEMS。

寫在前面

雖然大部分人對於MEMS(Microelectromechanical systems,微機電系統/微機械/微系統)還是感到很陌生,但是其實MEMS在我們生產,甚至生活中早已無處不在了,智慧型手機,健身手環、印表機、汽車、無人機以及VR/AR頭戴式設備,部分早期和幾乎所有近期電子產品都應用了MEMS器件。

MEMS是一門綜合學科,學科交叉現象及其明顯,主要涉及微加工技術,機械學/固體聲波理論,熱流理論,電子學,生物學等等。MEMS器件的特徵長度從1毫米到1微米,相比之下頭髮的直徑大約是50微米。

MEMS傳感器主要優點是體積小、重量輕、功耗低、可靠性高、靈敏度高、易於集成等,是微型傳感器的主力軍,正在逐漸取代傳統機械傳感器,在各個領域幾乎都有研究,不論是消費電子產品、汽車工業、甚至航空航天、機械、化工及醫藥等各領域。

常見產品有壓力傳感器,加速度計,陀螺,靜電致動光投影顯示器,DNA擴增微系統,催化傳感器。

MEMS的快速發展是基於MEMS之前已經相當成熟的微電子技術、集成電路技術及其加工工藝。 MEMS往往會採用常見的機械零件和工具所對應微觀模擬元件,例如它們可能包含通道、孔、懸臂、膜、腔以及其它結構。然而,MEMS器件加工技術並非機械式。相反,它們採用類似於集成電路批處理式的微製造技術。

批量製造能顯著降低大規模生產的成本。若單個MEMS傳感器晶片面積為5 mm x 5 mm,則一個8英寸(直徑20釐米)矽片(wafer)可切割出約1000個MEMS傳感器晶片(圖1),分攤到每個晶片的成本則可大幅度降低。

因此MEMS商業化的工程除了提高產品本身性能、可靠性外,還有很多工作集中於擴大加工矽片半徑(切割出更多晶片),減少工藝步驟總數,以及儘可能地縮傳感器大小。

圖1. 8英寸矽片上的MEMS晶片(5mm X 5mm)示意圖

圖2. 從矽原料到矽片過程。矽片上的重複單元可稱為晶片(chip 或die)。

MEMS需要專門的電子電路IC進行採樣或驅動,一般分別製造好MEMS和IC粘在同一個封裝內可以簡化工藝,如圖3。不過具有集成可能性是MEMS技術的另一個優點。

正如之前提到的,MEMS和ASIC (專用集成電路)採用相似的工藝,因此具有極大地潛力將二者集成,MEMS結構可以更容易地與微電子集成。然而,集成二者難度還是非常大,主要考慮因素是如何在製造MEMS保證IC部分的完整性。

例如,部分MEMS器件需要高溫工藝,而高溫工藝將會破壞IC的電學特性,甚至熔化集成電路中低熔點材料。MEMS常用的壓電材料氮化鋁由於其低溫沉積技術,因為成為一種廣泛使用post-CMOS compatible(後CMOS兼容)材料。

雖然難度很大,但正在逐步實現。與此同時,許多製造商已經採用了混合方法來創造成功商用並具備成本效益的MEMS 產品。一個成功的例子是ADXL203,圖4。

ADXL203是完整的高精度、低功耗、單軸/雙軸加速度計,提供經過信號調理的電壓輸出,所有功能(MEMS & IC)均集成於一個單晶片中。這些器件的滿量程加速度測量範圍為±1.7 g,既可以測量動態加速度(例如振動),也可以測量靜態加速度(例如重力)。

圖3. MEMS與IC在不同的矽片上製造好了再粘合在同一個封裝內

圖4. ADXL203(單片集成了MEMS與IC)

1、通信/行動裝置

圖7. 智慧型手機簡化示意圖

在智慧型手機中,iPhone 5採用了4個 MEMS傳感器,三星Galaxy S4手機採用了八個MEMS傳感器。

iPhone 6 Plus使用了六軸陀螺儀&加速度計(InvenSense MPU-6700)、三軸電子羅盤(AKM AK8963C)、三軸加速度計(Bosch Sensortec BMA280),磁力計,大氣壓力計(Bosch Sensortec BMP280)、指紋傳感器(Authen Tec的TMDR92)、距離傳感器,環境光傳感器(來自AMS的TSL2581 )和MEMS麥克風。

iphone 6s與之類似,稍微多一些MEMS器件,例如採用了4個MEMS麥克風。預計將來高端智慧型手機將採用數十個MEMS器件以實現多模通信、智能識別、導航/定位等功能。 MEMS硬體也將成為LTE技術亮點部分,將利用MEMS天線開關和數字調諧電容器實現多頻帶技術。

以智慧型手機為主的行動裝置中,應用了大量傳感器以增加其智能性,提高用戶體驗。這些傳感器並非手機等移動/通信設備獨有,在本文以及後續文章其他地方所介紹的加速度、化學元素、人體感官傳感器等可以了解相關信息,在此不贅敘。此處主要介紹通信中較為特別的MEMS器件,主要為與射頻相關MEMS器件。

通信系統中,大量不同頻率的頻帶(例如不同國家,不同公司間使用不同的頻率,2G,3G,LTE,CDMD以及藍牙,wifi等等不同技術使用不同的通信頻率)被使用以完成通訊功能,而這些頻帶的使用離不開頻率的產生。

聲表面波器件,作為一種片外(off-chip)器件,與IC集成難度較大。表面聲波(SAW)濾波器曾是手機天線雙工器的中流砥柱。2005年,安捷倫科技推出基於MEMS體聲波(BAW)諧振器的頻率器件(濾波器),該技術能夠節省四分之三的空間。

BAW器件不同於其他MEMS的地方在於BAW沒有運動部件,主要通過體積膨脹與收縮實現其功能。(另外一個非位移式MEMS典型例子是依靠材料屬性變化的MEMS器件,例如基於相變材料的開關,加入不同電壓可以使材料發生相變,分別為低阻和高阻狀態,詳見後續開關專題)。

在此值得一提的事,安華高Avago(前安捷倫半導體事業部)賣的如火如荼的薄膜腔聲諧振器(FBAR)。也是前段時間天津大學在美國被抓的zhang hao研究的東西。得益於AlN氮化鋁壓電材料的沉積技術的巨大進步,AlN FBAR已經被運用在iphone上作為重要濾波器組件。下圖為FBAR和為SMR (Solidly Mounted Resonator)。其原理主要通過固體聲波在上下表面反射形成諧振腔。

圖8. FBAR示意圖,壓電薄膜懸空在腔體至上

圖9. SMR示意圖(非懸空結構,採用Bragg reflector布拉格反射層)

如果所示,其中的紅色線條表示震動幅度。固體聲波在垂直方向發生反射,從而將能量集中於中間橙色的壓電層中。頂部是與空氣的交界面,接近於100%反射。底部是其與布拉格反射層的界面,無法達到完美反射,因此部分能量向下洩露。

實物FBAR掃描電鏡圖。故意將其設計成不平行多邊形是為了避免水平方向水平方向反射導致的諧振,如果水平方向有諧振則會形成雜波。

上圖所示為消除雜波前後等效導納(即阻抗倒數,或者簡單理解為電阻值倒數)。消除雜波後其特性曲線更平滑,效率更高,損耗更小,所形成的濾波器在同頻帶內的紋波更小。

圖示為若干FBAR連接起來形成濾波器。右圖為封裝好後的FBAR濾波器晶片及米粒對比,該濾波器比米粒還要小上許多。

2、可穿戴/植入式領域

圖10. 用戶與物聯網

可穿戴/植入式MEMS屬於物聯網IoT重要一部分,主要功能是通過一種更便攜、快速、友好的方式(目前大部分精度達不到大型外置儀器的水平)直接向用戶提供信息。可穿戴/應該說是最受用戶關注,最感興趣的話題了。

大部分用戶對汽車、印表機內的MEMS無感,這些器件與用戶中間經過了數層中介。但是可穿戴/直接與用戶接觸,提升消費者科技感,更受年輕用戶喜愛,例子可見Fitbit等健身手環。

該領域最重要的主要有三大塊:消費、健康及工業,我們在此主要討論更受關注的前兩者。消費領域的產品包含之前提到的健身手環,還有智能手錶等。健康領域,即醫療領域,主要包括診斷,治療,監測和護理。

比如助聽、指標檢測(如血壓、血糖水平),體態監測。MEMS幾乎可以實現人體所有感官功能,包括視覺、聽覺、味覺、嗅覺(如Honeywell電子鼻)、觸覺等,各類健康指標可通過結合MEMS與生物化學進行監測。MEMS的採樣精度,速度,適用性都可以達到較高水平,同時由於其體積優勢可直接植入人體,是醫療輔助設備中關鍵的組成部分。

傳統大型醫療器械優勢明顯,精度高,但價格昂貴,普及難度較大,且一般一臺設備只完成單一功能。相比之下,某些醫療目標可以通過MEMS技術,利用其體積小的優勢,深入接觸測量目標,在達到一定的精度下,降低成本,完成多重功能的整合。

以近期所了解的一些MEMS項目為例,通過MEMS傳感器對體內某些指標進行測量,同時MEMS執行器(actuator)可直接作用於器官或病變組織進行更直接的治療,同時系統可以通過MEMS能量收集器進行無線供電,多組單元可以通過MEMS通信器進行信息傳輸。

個人認為,MEMS醫療前景廣闊,不過離成熟運用還有不短的距離,尤其考慮到技術難度,可靠性,人體安全等。

圖11. MEMS實現人體感官功能

可穿戴設備中最著名,流行的便數蘋果手錶了,其實蘋果手錶和蘋果手錶結構已經非常相似了,處理器、存儲單元、通信單元、(MEMS)傳感器單元等,因此對此不在贅敘。

圖12. 蘋果手表示意圖

3、投影儀

投影儀所採用的MEMS微鏡如圖13,14所示。其中掃描電鏡圖則是來自於TI的Electrostatically-driven digital mirrors for projection systems。

每個微鏡都由若干錨anchor或鉸鏈hinge支撐,通過改變外部激勵從而控制同一個微鏡的不同錨/鉸鏈的尺寸從而微鏡傾斜特定角度,將入射光線向特定角度反射。

大量微鏡可以形成一個陣列從而進行大面積的反射。錨/鉸鏈的尺寸控制可以通過許多方式實現,一種簡單的方式便是通過加熱使其熱膨脹,當不同想同一個微鏡的不同錨/鉸鏈通入不同電流時,可以使它們產生不同形變,從而向指定角度傾斜。TI採用的是靜電驅動方式,即通入電來產生靜電力來傾斜微鏡。

圖13 微鏡的SEM示意圖

圖14 微鏡結構示意圖

德州儀器的數字微鏡器件(DMD),廣泛應用於商用或教學用投影機單元以及數字影院中。每16平方微米微鏡使用其與其下的CMOS存儲單元之間的電勢進行靜電致動。灰度圖像是由脈衝寬度調製的反射鏡的開啟和關閉狀態之間產生的。

顏色通過使用三晶片方案(每一基色對應一個晶片),或通過一個單晶片以及一個色環或RGB LED光源來加入。採用後者技術的設計通過色環的旋轉與DLP晶片同步,以連續快速的方式顯示每種顏色,讓觀眾看到一個完整光譜的圖像。

TI有一個非常非常具體生動的視頻介紹該產品,你可以在這個視頻中看到整個微鏡陣列如何對光進行不同角度的折射。

圖15 微鏡反射光線示意圖

4、MEMS 加速度計

加速度傳感器是最早廣泛應用的MEMS之一。MEMS,作為一個機械結構為主的技術,可以通過設計使一個部件(圖15中橙色部件)相對底座substrate產生位移(這也是絕大部分MEMS的工作原理),這個部件稱為質量塊(proof mass)。質量塊通過錨anchor,鉸鏈hinge,或彈簧spring與底座連接。

綠色部分固定在底座。當感應到加速度時,質量塊相對底座產生位移。通過一些換能技術可以將位移轉換為電能,如果採用電容式傳感結構(電容的大小受到兩極板重疊面積或間距影響),電容大小的變化可以產生電流信號供其信號處理單元採樣。通過梳齒結構可以極大地擴大傳感面積,提高測量精度,降低信號處理難度。加速度計還可以通過壓阻式、力平衡式和諧振式等方式實現。

圖15 MEMS加速度計結構示意圖

圖16 MEMS加速度計中位移與電容變化示意圖

汽車碰撞後,傳感器的proof mass產生相對位移,信號處理單元採集該位移產生的電信號,觸發氣囊。更直觀的效果可以觀看視頻。

圖17. 汽車碰撞後加速度計的輸出變化。

實物圖,比例尺為20微米,即20/1000毫米。

5、列印噴嘴

一種設計精巧的列印噴如下圖所示。兩個不同大小的加熱元件產生大小不一的氣泡從而將墨水噴出。具體過程為:1,左側加熱元件小於右側加熱元件,通入相同電流時,左側產生更多熱量,形成更大氣泡。左側氣泡首先擴大,從而隔絕左右側液體,保持右側液體高壓力使其噴射。噴射後氣泡破裂,液體重新填充該腔體。

圖18. 採用氣泡膨脹的噴墨式MEMS

圖19. HP生產的噴墨式MEMS相關產品

另一種類型MEMS列印噴頭,也是通過加熱,氣泡擴大將墨水擠出:

MEMS噴頭nozzle及加熱器heater實物圖:

還有一種類型是通過壓電薄膜震動來擠壓墨水出來:

6、開關/繼電器

MEMS繼電器與開關。其優勢是體積小(密度高,採用微工藝批量製造從而降低成本),速度快,有望取代帶部分傳統電磁式繼電器,並且可以直接與集成電路IC集成,極大地提高產品可靠性。

其尺寸微小,接近於固態開關,而電路通斷採用與機械接觸(也有部分產品採用其他通斷方式),其優勢劣勢基本上介於固態開關與傳統機械開關之間。MEMS繼電器與開關一般含有一個可移動懸臂梁,主要採用靜電致動原理,當提高觸點兩端電壓時,吸引力增加,引起懸臂梁向另一個觸電移動,當移動至總行程的1/3時,開關將自動吸合(稱之為pull in現象)。pull in現象在宏觀世界同樣存在,但是通過計算可以得知所需的閾值電壓高得離譜,所以我們日常中幾乎不會看到。

圖20. MEMS開關斷合示意圖

再貼上幾張實物圖片,與示意圖並非完全一致,但是原理類似,都是控制著一個間隙gap接觸與否:

生物類實驗

MEMS器件由於其尺寸接近生物細胞,因此可以直接對其進行操作。

圖21. MEMS操作細胞示意圖

7、NEMS(納機電系統)

NEMS(Nanoelectromechanical systems, 納機電系統)與MEMS類似,主要區別在於NEMS尺度/重量更小,諧振頻率高,可以達到極高測量精度(小尺寸效應),比MEMS更高的表面體積比可以提高表面傳感器的敏感程度,(表面效應),且具有利用量子效應探索新型測量手段的潛力。

首個NEMS器件由IBM在2000年展示, 如圖22所示。器件為一個 32X32的二維懸臂梁(2D cantilever array)。該器件採用表面微加工技術加工而成(MEMS中採用應用較多的有體加工技術,當然MEMS也採用了不少表面微加工技術,關於微加工技術將會在之後的專題進行介紹)。

該器件設計用來進行超高密度,快速數據存儲,基於熱機械讀寫技術(thermomechanical writing and readout),高聚物薄膜作為存儲介質。該數據存儲技術來源於AFM(原子力顯微鏡)技術,相比磁存儲技術,基於AFM的存儲技術具有更大潛力。

快速熱機械寫入技術(Fast thermomechanical writing)基於以下概念(圖23),『寫入』時通過加熱的針尖局部軟化/融化下方的聚合物polymer,同時施加微小壓力,形成納米級別的刻痕,用來代表一個bit。加熱時通過一個位於針尖下方的阻性平臺實現。

對於『讀』,施加一個固定小電流,溫度將會被加熱平臺和存儲介質的距離調製,然後通過溫度變化讀取bit。 而溫度變化可通過熱阻效應(溫度變化導致材料電阻變化)或者壓阻效應(材料收到壓力導致形變,從而導致導致材料電阻變化)讀取。

圖22. IBM 二維懸臂梁NEMS掃描電鏡圖(SEM)其針尖小於20nm

圖23.快速熱機械寫入技術示意圖

一網打盡系列文章,請回復以下關鍵詞查看:

創新發展習近平 | 創新中國 | 創新創業 | 科技體制改革 | 科技創新政策 | 協同創新 | 成果轉化 | 新科技革命 | 基礎研究 | 產學研 | 供給側

熱點專題軍民融合 | 民參軍 | 工業4.0 | 商業航天 | 智庫 | 國家重點研發計劃 | 基金 | 裝備採辦 | 博士 | 摩爾定律 | 諾貝爾獎 | 國家實驗室 | 國防工業 | 十三五 | 創新教育 | 軍工百強 | 試驗鑑定 | 影響因子 | 雙一流

預見未來預見2016 |預見2020 | 預見2025 | 預見2030 | 預見2035 | 預見2045 | 預見2050 |

前沿科技顛覆性技術 | 生物 | 仿生 | 腦科學 | 精準醫學 | 基因 | 基因編輯 | 虛擬實境 | 增強現實 | 納米 | 人工智慧 | 機器人 | 3D列印 | 4D列印 | 太赫茲 | 雲計算 | 物聯網 | 網際網路+ | 大數據 | 石墨烯 | 能源 | 電池 | 量子 | 超材料 | 超級計算機 | 衛星 | 北鬥 | 智能製造 | 不依賴GPS導航 | 通信 | MIT技術評論 | 航空發動機 | 可穿戴 | 氮化鎵 | 隱身 | 半導體 | 腦機接口

先進武器中國武器 | 無人機 | 轟炸機 | 預警機 | 運輸機 | 戰鬥機 | 六代機 | 網絡武器 | 雷射武器 | 電磁炮 | 高超聲速武器 | 反無人機 | 防空反導 | 潛航器 |

未來戰爭未來戰爭 | 抵消戰略 | 水下戰 | 網絡空間戰 | 分布式殺傷 | 無人機蜂群 | 太空站 |反衛星

領先國家俄羅斯 | 英國 | 日本 | 以色列 | 印度

前沿機構戰略能力辦公室 | DARPA | Gartner | 矽谷 | 谷歌 | 華為 | 俄先期研究基金會 | 軍工百強

前沿人物錢學森 | 馬斯克 | 凱文凱利 | 任正非 | 馬雲 | 歐巴馬 | 川普

專家專黃志澄 | 許得君 | 施一公 | 王喜文 | 賀飛 | 李萍 | 劉鋒 | 王煜全 | 易本勝 | 李德毅 | 遊光榮 | 劉亞威 | 趙文銀 | 廖孟豪 | 譚鐵牛

全文收錄2016文章全收錄 | 2015文章全收錄 | 2014文章全收錄

其他主題系列陸續整理中,敬請期待……

「遠望智庫」聚焦前沿科技領域,著眼科技未來發展,圍繞軍民融合、科技創新、管理創新、科技安全、智慧財產權等主題,開展情報挖掘、發展戰略研究、規劃論證、評估評價、項目篩選,以及成果轉化等工作,為管理決策、產業規劃、企業發展、機構投資提供情報、諮詢、培訓等服務,為推動國家創新驅動發展和軍民融合深度發展提供智力支撐。返回搜狐,查看更多

責任編輯:

相關焦點

  • memsstar 推出新一代微機電系統 (MEMS) 蝕刻與沉積設備
    本文引用地址:http://www.eepw.com.cn/article/271420.htm  「行動裝置、『物聯網』與兆級傳感器的迅猛增長加快了 MEMS 技術的採用。」 memsstar 的執行長 Tony McKie 說道。「隨著應用多元化與器件性能不斷優化,毋庸置疑各個廠商要求更先進的製造工藝,以確保尺寸更小、高功能的 MEMS 器件不再出現影響性能的工藝偏差。
  • memsstar談MEMS刻蝕與沉積工藝的挑戰
    另一方面,MEMS是採用體矽加工工藝嵌入到矽中,或通過表面微加工技術在矽的頂部形成。  體矽MEMS的深反應離子刻蝕(DRIE)也稱為Bosch工藝(因為該工藝在20世紀90年代由Bosch開發),是專為MEMS設計的一種最老的工藝解決方案。雖然它不是標準的半導體工藝,但現在已應用於三維裸片堆疊中,通過矽通孔(TSV)技術進行蝕刻。
  • 釋放MEMS機械結構的幹法刻蝕技術
    ,該技術為MEMS器件設計師提供了更多的生產選擇,同時帶來了寬泛的製造工藝窗口,從而使良率得到了提升。SVR-vHF氧化物釋放模塊結合現有的memsstar SVR-Xe 犧牲性汽相釋放模塊,利用無水氫氟蒸汽(aHF)來去除犧牲氧化物,從而釋放MEMS機械結構。SVR蝕刻方法可以完全地去除犧牲材料而不損害機械結構或導致黏附,它同時提供了高度的可選擇性、可重複性和均勻性。
  • 半導體mems企業有哪些_國內十大半導體mems企業排行榜
    公司研發了擁有完全自主智慧財產權的先進的MEMS工藝和集成技術,專注於為消費電子及汽車電子市場設計和生產低成本、高性價比、低功耗、小尺寸的商用MEMS陀螺儀晶片,並為客戶提供各種全面的應用解決方案和極其優質的服務。
  • mems傳感器現狀_mems傳感器製作工藝
    mems傳感器研究現狀   1、微機械壓力傳感器   微機械壓力傳感器是最早開始研製的微機械產品,也是微機械技術中最成熟、最早開始產業化的產品。從信號檢測方式來看,微機械壓力傳感器分為壓阻式和電容式兩類,分別以體微機械加工技術和犧牲層技術為基礎製造。從敏感膜結構來看,有圓形、方形、矩形、E形等多種結構。壓阻式壓力傳感器的精度可達0.05%~0.01%,年穩定性達0.1%/F.S,溫度誤差為0.0002%,耐壓可達幾百兆帕,過壓保護範圍可達傳感器量程的20倍以上,並能進行大範圍下的全溫補償。
  • CNC刀柄的那些事,這篇文章來說透!
    這是金屬加工(mw1950pub)發布的第12386篇文章 編者按 BT刀柄中的7:24是什麼意思?BT、NT、JT、IT、CAT是什麼標準?
  • 技術宅拯救世界?馬自達表示終於輪到我表演了!
    目前大多數汽油機的工作原理還是基於奧託循環進行的隨著技術的發展,越來越多的新技術被應用到了發動機上,從化油器到多點電噴再到缸內直噴,從氣門的簡單開閉到VVT-i、VTEC等配氣系統的應用,都彰顯著人們在探究高效率發動機上的不懈努力。
  • 導航系統中的慣性技術是怎樣的?這篇文章講得詳細
    這就是慣性技術為我們續航。自1687年牛頓三大定律的建立,到1910年的舒勒調諧原理,第一代慣性技術奠定了整個慣性導航發展的基礎。典型代表為三浮陀螺、靜電陀螺以及動力調諧陀螺。特點是種類多、精度高、體積質量大、系統組成結構複雜、性能受機械結構複雜和極限精度制約,產品製造維護成本昂貴,典型產品有美國MX洲際飛彈用三浮儀表平臺系統。 第二代,基於薩格奈克(Sagnac)效應。 典型代表是雷射和光纖陀螺。
  • 我是如何從零基礎,到第一篇 SCI 論文成功接收!
    SCI 寫作一直是困擾中國臨床醫生的難題,一篇 SCI 文章的發表,不僅是對自身科研能力的肯定,也是晉升路上的通關帖。
  • 終於悟到了!計算機原理!
    比如講軟體工程以及開發項目管理的時候,概念先灌輸了一大堆,大多數東西對我來說神秘莫測。理想的方式,是給出一個場景,比如從一個idea開始,到一個產品基本構思,然後落地到實際的開發任務,在模擬開發過程中,逐漸引出軟體工程以及項目管理方面的各種知識,猶如徹底體驗了一次,形成深刻印象。這就是我認為的所謂場景教學。
  • OLED掀起AOI檢測「投資熱」,這篇文章把原理、市場及領域解析透了……
    AOI 全稱自動光學檢測,是一種基於光學原理利用機器視覺替代人工目檢的檢測技術。AOI設備主要應用於 PCB、FPD、半導體、光伏、汽車電子等行業的工業檢測。AOI 技術總體上是利用機器視覺模仿人工檢測的過程,其基本原理與人工檢測相似。
  • 這篇文章講透了!
    但還是那句話:它們是「認知層」的高度濃縮,要遷移到「應用層」,需要自己不斷地練習和聯想。並不是讀完這幾篇文章,你就自動學會它們了。這已經不僅僅是「學習」了,而是整個生活、工作和職業生涯。就像我在以前的文章中提到的:無論你做何種工作,未來的趨勢,一定是更加往「整體性」靠攏。從分工、細化的時代,走向多面、立體的時代。
  • mems傳感器有啥優點
    mems傳感器有啥優點   MEMS是指可批量製作的,將微型機構、微型傳感器、微型執行器以及信號處理和控制電路、直至接口、通信和電源等集成於一塊或多塊晶片上的微型器件或系統。例如,在陀螺儀及麥克風方面,MEMS技術的應用為之技術升級帶來較大跨越。   比較1:陀螺儀。傳統的光纖陀螺儀,體積雖然越來越小,但對於放入一些電子產品而言是不可能完成的。而且為了保證性能,這樣一個陀螺儀的產量之低和價格之高也是可想而知。   而我們現在智慧型手機上採用的陀螺儀則是MEMS陀螺儀,例如上圖。
  • 升級MEMS製造:從概念到批量生產
    這些傳統市場的發展也在加速催化對各種相關新應用的需求,包括人工智慧(AI)、虛擬實境(VR)、增強現實(AR)、機器人技術、醫療傳感器以及更先進的汽車電子產品,而以上各種應用的發展又刺激了對各類半導體的需求,包括邏輯晶片、控制IC、圖像傳感器以及MEMS組件。
  • AO工藝的硝化與反硝化原理解釋 這篇文章說透了!
    在好氧段,好氧微生物氧化分解汙水中的BOD5,同時進行硝化反應,有機氮和氨氮,在好氧段轉化為硝化氮並回流到缺氧段,其中的反硝化細菌利用化和態氮和汙水中的有機碳進行反硝化反應,使化合態氮變成分子態氮,同時去除碳和氫的效果。這裡著重介紹生物脫氮原理。(1)生物脫氮的基本原理:傳統的生物脫氮機理認為:脫氮過程一般包括氨化、硝化和反硝化三個過程。
  • MEMS加速度計的原理及應用
    MEMS(Micro Electro Mechanical Systems)加速度計就是使用MEMS技術製造的加速度計。由於採用了微機電系統技術,使得其尺寸大大縮小,一個MEMS加速度計只有指甲蓋的幾分之一大小。MEMS加速度計具有體積小、重量輕、能耗低等優點。2、MEMS加速度計一般用在哪裡?
  • 這篇文章告訴你什麼是高級氧化技術
    這篇文章告訴你什麼是高級氧化技術北極星水處理網訊:高級氧化技術又稱深度氧化技術,其基礎在於運用電、光輻照、催化劑,有時還與氧化劑結合,在反應中產生活性極強的自由基(如HO•),再通過自由基與有機化合物之間的加合、取代、電子轉移、斷鍵等,使水體中的大分子難降解有機物氧化降解成低毒或無毒的小分子物質,甚至直接降解成為
  • 關於文獻綜述,這篇文章說透了!
    如《智能化時代職業教育人才培養模式的根本轉型》這篇論文的關鍵詞就是智能化時代、職業教育、人才培養模式。當然,有時候也不能完全憑論文題目來確定,因為論文題目中可能只有一個重要概念或術語。以《教育領域供給側改革的幾個關係》這篇論文為例,該論文題目中的重要概念只有一個——供給側。儘管如此,「供給側」這個詞組還不能作為關鍵詞,因為這個概念最初來自經濟學領域而不是教育學領域。
  • 張福根專欄|雷射粒度儀應用導論之原理篇
    儀器信息網有幸邀請在中國顆粒學會前理事長,真理光學首席科學家,從事雷射粒度儀的研究和開發工作近30年的張福根博士親自執筆開設專欄,以淵博而豐厚的系列文章,帶讀者走進雷射粒度儀的今時今日。雷射粒度儀應用導論之原理篇當前,雷射粒度儀在顆粒表徵中的應用已經非常廣泛。
  • MEMS加速度計國產化加劇,智騰微電子率先發力
    隨著國內電子技術發展的成熟,大部分電子元器件製造商開始大力發展技術創新能力,提高自身技術競爭能力,期望於未來在全球市場大放光彩,同時改善國內傳感器全部靠進口的魔咒。智騰微電子憑藉多年在高端傳感器製造業的經驗,投入大部分精力財力發展國產化mems加速度計製造,填補國內mems加速度計產業不足的空白。