Python學習第114課——numpy中ndarray的四則運算

2021-01-11 石問新

【每天幾分鐘,從零入門python編程的世界!】

我們為什麼要學習numpy?numpy其實就是number+Python的簡寫,意思就是通過Python對數據進行處理。

要對數據進行處理,就少不了最基本的加減乘除等操作。這節我們學習numpy中數組的一些基本的四則運算。

●numpy中數組的加法運算

我們首先生成x和y兩個float類型的數組,然後把它們進行相加。

代碼如下:

運行結果:

我們看到,x和y兩個數組相加,是把兩個數組的對應位置的元素進行相加,形成一個新的數組。

補充:

除了可以把兩個數組直接相加,也可以調用numpy中的add()函數對兩個數組進行相加:

我們看到調用numpy的add()函數結果跟計算x+y的結果是一樣的。

舉一反三,numpy中數組的加、減、乘、除、開方運算,方法都是一樣的。

●numpy中數組的加、減、乘、除、開方運算

運行結果:

以上就是numpy中加減乘除以及開方運算的方法--可以直接用運算符計算,也可以調用numpy中的四則運算的函數,不過開方沒有直接運算的運算符。

我是時問新,歡迎關注我。跟我一起從零開始學習Python,每天花一點時間,開啟python編程新世界的大門,領略新的風光,讓人生多一種可能!

相關焦點

  • Python學習第119課——numpy中的broadcasting
    【每天幾分鐘,從零入門python編程的世界!】這節課我們學習numpy中的數據的一個多變的特性--broadcasting,broadcasting的官方的說明比較麻煩,我們這裡把它簡化一下,就把它當做「腦補」的意思。我們舉例來說明。
  • Python學習第116課——numpy.dot和矩陣相乘的數學運算
    【每天幾分鐘,從零入門python編程的世界!】關於numpy中數組的相乘,我們學習了對位相乘(用numpy.multiply、或*直接相乘,比如數組a和b的對位相乘就是numpy.multiply(a,b)或a*b)和一維數組的點乘(dot product,也有人叫inner product,比如一維數組a和b的點乘就是a.b)。
  • Python學習第112課——numpy中數組查找元素和改變元素的小技巧
    【每天幾分鐘,從零入門python編程的世界!】上節我們學習了如何利用index找到ndarray數組中的一些元素,並把找到的元素生成一個新的ndarray。代碼如下:現在我們學習幾個用index找到ndarray中元素的小技巧。
  • Python學習第117課——numpy中dot的運用舉例
    【每天幾分鐘,從零入門python編程的世界!】上節我們學習了最基礎的matrix的運算,可能有小夥伴覺得這都要涉及高等數學知識了,確實如果你想做數據科學、做人工智慧,統計學、概率論等數學知識,尤其是算法是繞不過去的坎,但是不要怕!!!
  • Python數據分析之Numpy學習 2——NumPy 基礎 ndarray對象
    Python數據分析之Numpy學習 2 —— NumPy 基礎學習NumPy(Numerical Python)是高性能科學計算和數據分析的基礎包。NumPy的主要對象是同構數據多維容器(homogeneous multidimensional array)——ndarray,也就是說每一個ndarray都是一個相同類型元素組成的表格(二維)。
  • NumPy ndarray數組的創建
    下面將介紹Numpy的一些常用方法,尤其是與機器學習、深度學習相關的一些內容。NumPy 封裝了一個新的數據類型 ndarray(N-dimensional Array),它是一個多維數組對象。該對象封裝了許多常用的數學運算函數,方便我們做數據處理、數據分析等。那麼,如何生成 ndarray 呢?
  • Python數據分析類庫系列-Numpy之多維數組ndarray
    這是因為: NumPy是在一個連續的內存塊中存儲數據,獨立於其他Python內置對象。NumPy的C語言編寫的算法庫可以操作內存,而不必進行類型檢查或其它前期工作。比起Python的內置序列,NumPy數組使用的內存更少。
  • NumPy中的ndarray與Pandas的Series和DataFrame之間的區別與轉換
    在數據分析中,經常涉及numpy中的ndarray對象與pandas的Series和DataFrame對象之間的轉換,讓一些開發者產生了困惑。本文將簡單介紹這三種數據類型,並以金融市場數據為例,給出相關對象之間轉換的具體示例。
  • Numpy基礎,一位Python大神的筆記,看了後我連Matlab都學會了!
    創建矩陣對於Python中的numpy模塊,一般用其提供的ndarray對象。 創建一個ndarray對象很簡單,只要將一個list作為參數即可。例如:常用矩陣運算符Numpy中的ndarray對象重載了許多運算符,使用這些運算符可以完成矩陣間對應元素的運算。
  • Python NumPy用法介紹
    使用下面格式約定,引入NumPy包:import numpy as npNumPy的ndarray:N維數組對象NumPy最重要的是其N維數組對象(即ndarray),其中的所有元素必須是相同類型的。該對象是一個快速而靈活的大數據集容器,可以利用這種數組對整塊數據執行數學運算,其語法跟標量元素之間的運算一樣。創建ndarray使用np.array(list/tuple, dtype=np.float32)函數,產生一個新的含有傳入數據的ndarray對象。
  • 不懂NumPy 算什麼 Python 程式設計師?|CSDN 博文精選
    list VS ndarraynumpy 的核心是 ndarray 對象(numpy 數組),它封裝了 python 原生的同數據類型的 n 維數組(python 數組)。numpy 數組和 python 數組之間有幾個重要的區別:numpy 數組一旦創建,其元素數量就不能再改變了。增刪 ndarray 元素的操作,意味著創建一個新數組並刪除原來的數組。
  • 數據分析-numpy庫快速了解
    數組對象可以去掉元素間運算所需的循環,使一維向量更像單個數據 設置專門的數組對象,經過優化,可以提升這類應用的運算速度觀察:科學計算中,一個維度所有數據的類型往往相同 數組對象採用相同的數據類型,有助於節省運算和存儲空間具體可以看下面一個例子:(來源嵩天老師案例)3.numpy庫怎麼使用先安裝numpy
  • Numpy的ndarray:一種多維數組對象
    前言Numpy最重要的一個特點就是其N維數組對象(即ndarray),該對象是一個快速而靈活的大數據集容器。可以利用這種數組對整塊數據執行一些數學運算。模塊導入方式如下:import numpy as npndarray是一個通用的同構數據多維容器,也就是說,其中的所有元素必須是相同類型的。
  • Python:一篇文章掌握Numpy的基本用法
    前言Numpy是一個開源的Python科學計算庫,它是python科學計算庫的基礎庫,許多其他著名的科學計算庫如Pandas,Scikit-learn等都要用到Numpy庫的一些功能。本文主要內容如下:Numpy數組對象創建ndarray數組Numpy的數值類型ndarray數組的屬性ndarray數組的切片和索引處理數組形狀數組的類型轉換numpy常用統計函數數組的廣播1 Numpy數組對象Numpy中的多維數組稱為ndarray
  • Python中NumPy簡介及使用舉例
    支持多維數組與矩陣運算,此外也針對數組運算提供大量的數學函數庫。NumPy提供了與Matlab相似的功能與操作方式,因為兩者皆為直譯語言。NumPy中定義的最重要的對象是稱為ndarray的N維數組類型。它描述相同類型的元素集合,可以使用基於零的索引訪問集合中元素。基本的ndarray是使用NumPy中的數組函數創建的: numpy.array。NumPy支持比Python更多種類的數值類型。NumPy數值是dtype(數據類型)對象的實例,每個對象具有唯一的特徵。
  • 如果不懂Numpy,請別說自己是Python程式設計師
    幸運的是,後來我遇到了 numpy 這個神器。numpy 是 python 科學計算的基礎軟體包,提供多了維數組對象,多種派生對象(掩碼數組、矩陣等)以及用於快速操作數組的函數及 API,它包括數學、邏輯、數組形狀變換、排序、選擇、I/O 、離散傅立葉變換、基本線性代數、基本統計運算、隨機模擬等等。
  • Python學習第113課——numpy中用條件判斷去篩選數組中的元素
    【每天幾分鐘,從零入門python編程的世界!】之前我們學習了如何在numpy中查找數組元素的方法和技巧,現在我們學習如何用條件判斷的方式篩選數組的元素。●numpy中的數組可以直接進行比較直接上代碼:運行結果:我們看到,condition列印出來,它的結構和h的結構一樣。
  • Python中的Numpy基礎20問
    import numpy as np# 創建二維數組x2 = np.array([[1,2,3],[4,5,6]])# 將x2轉換為三維數組,並且自定義每個軸的元素數量x2.resize((1,2,3))x2'''輸出:array([[[1, 2, 3],[4, 5, 6]]])'''如何對數組進行索引和切片操作?numpy一維數組的索引和切片操作類似python列表,這裡不多講。
  • numpy庫學習總結(基礎知識)
    最近在學習Python中OpenCV庫,學習花了很多時間,發現基礎知識很重要,尤其是numpy這個庫,在進行程序開發時,處理大量類似數組這種數據結構時,它的重要性等同於Python中的列表,像前篇我們寫的《使用Python中OpenCV庫創建一幅圖片的RGB通道圖片》中,對於圖片的處理,大部分時間我們是在跟類似數組這種數據結構在打交道
  • 值得收藏的 NumPy 小抄表(含主要語法、代碼)
    numpy和稀疏矩陣運算包scipy配合使用更加方便。NumPy(Numeric Python)提供了許多高級的數值編程工具,如:矩陣數據類型、矢量處理,以及精密的運算庫。專為進行嚴格的數字處理而產生。多為很多大型金融公司使用,以及核心的科學計算組織如:Lawrence Livermore,NASA用其處理一些本來使用C++,Fortran或Matlab等所做的任務。