Python學習第119課——numpy中的broadcasting

2021-01-11 石問新

【每天幾分鐘,從零入門python編程的世界!】

這節課我們學習numpy中的數據的一個多變的特性--broadcasting,broadcasting的官方的說明比較麻煩,我們這裡把它簡化一下,就把它當做「腦補」的意思。

我們舉例來說明。

例:

運行結果:

從上例中,我們看到,x的「形狀」是3行2列,y的「形狀」是1行2列,之前我們學習numpy中的四則運算,所舉的例子中,兩個數組都是相同的「形狀」,在相加的時候每個數組對應位置上的元素分別相加,形成新的數組。而在這個例子中,x和y「形狀」不相同,y沒有第二行和第三行,但是我們看到代碼運行結果,相當於如下的代碼:

運行結果是一樣的:

這就是broadcasting,就相當於把y的第二行、第三行「腦補」上跟第一行一樣的元素,從而讓x和y的「形狀」相同,都變成3行2列,然後再進行對位運算,這就是broadcasting。

●什麼是broadcasting?

根據上例,我們發現沒有什麼複雜的原理,我們只要知道numpy中兩個「形狀」不同的數組進行加減乘除運算時,會「腦補」成相同的形狀再進行運算,這種運算的方法就叫broadcasting。

●numpy.empty_like

我們可以用numpy.empty_like(x)生成一個跟x數組形狀一樣的新的數組。

例:

運行結果:

通過上面的代碼,我們用np.empty_like(x)生成了一個數組,保存在z中,當我們把x和z列印出來,看到結果是一樣的。

除了np.empty_like(x),還有np.ones_like(x)、np.zeros_like(x)等等,它們也是分別生成跟x「形狀」一樣的數組,但是前者每個元素都是1,後者每個元素都是0。知道有這樣的東西就行。

●用numpy.empty_like實現broadcast

例:

運行結果:

代碼說明:

z[i,:]表示z數組的第i行所有列的元素。

比如z[1,0:2]就表示z數組的第2行的第1列到第2列的元素。逗號前面代表行數,逗號後面代表列數,冒號前後什麼都不寫就代表這一行的所有列的元素。

我們通過np.empty_like以及for循環的方式,把x數組的每一行的元素都加上y數組對應位置上的元素,這個過程就相當於broadcast「腦補」的過程。

我是時問新,歡迎關注我。跟我一起從零開始學習Python,每天花一點時間,開啟python編程新世界的大門,領略新的風光,讓人生多一種可能!

相關焦點

  • Python學習第114課——numpy中ndarray的四則運算
    【每天幾分鐘,從零入門python編程的世界!】我們為什麼要學習numpy?numpy其實就是number+Python的簡寫,意思就是通過Python對數據進行處理。要對數據進行處理,就少不了最基本的加減乘除等操作。
  • Python學習第117課——numpy中dot的運用舉例
    【每天幾分鐘,從零入門python編程的世界!】上節我們學習了最基礎的matrix的運算,可能有小夥伴覺得這都要涉及高等數學知識了,確實如果你想做數據科學、做人工智慧,統計學、概率論等數學知識,尤其是算法是繞不過去的坎,但是不要怕!!!
  • Python學習第112課——numpy中數組查找元素和改變元素的小技巧
    【每天幾分鐘,從零入門python編程的世界!】上節我們學習了如何利用index找到ndarray數組中的一些元素,並把找到的元素生成一個新的ndarray。代碼如下:現在我們學習幾個用index找到ndarray中元素的小技巧。
  • Python學習第113課——numpy中用條件判斷去篩選數組中的元素
    【每天幾分鐘,從零入門python編程的世界!】之前我們學習了如何在numpy中查找數組元素的方法和技巧,現在我們學習如何用條件判斷的方式篩選數組的元素。●numpy中的數組可以直接進行比較直接上代碼:運行結果:我們看到,condition列印出來,它的結構和h的結構一樣。
  • Python學習第116課——numpy.dot和矩陣相乘的數學運算
    【每天幾分鐘,從零入門python編程的世界!】關於numpy中數組的相乘,我們學習了對位相乘(用numpy.multiply、或*直接相乘,比如數組a和b的對位相乘就是numpy.multiply(a,b)或a*b)和一維數組的點乘(dot product,也有人叫inner product,比如一維數組a和b的點乘就是a.b)。
  • 資源|用Python和NumPy學習《深度學習》中的線性代數基礎
    本文系巴黎高等師範學院在讀博士 Hadrien Jean 的一篇基礎學習博客,其目的是幫助初學者/高級初學者基於深度學習和機器學習來掌握線性代數的概念。掌握這些技能可以提高你理解和應用各種數據科學算法的能力。
  • Python的武器庫05:numpy模塊(下)
    說到程式語言python,有一個著名的格言"餘生太短,只用python"。如果要分析為什麼會存在這麼一句格言?python的語法並不簡單,有複雜難懂的部分,之所以有這樣一句格言,是因為python中有很多強大的模塊,就像一個武器庫。
  • 好程式設計師Python培訓分享numpy簡介
    這類數值計算廣泛用於以下任務: 機器學習模型:在編寫機器學習算法時,需要對矩陣進行各種數值計算。 圖像處理和計算機圖形學:計算機中的圖像表示為多維數字數組。NumPy成為同樣情況下最自然的選擇。實際上,NumPy提供了一些優秀的庫函數來快速處理圖像。例如,鏡像圖像、按特定角度旋轉圖像等。 數學任務:NumPy對於執行各種數學任務非常有用,如數值積分、微分、內插、外推等。
  • 學習筆記,從NumPy到Scrapy,學習Python不能錯過這些庫
    在網絡上看到幾位前輩寫了關於python深度學習庫的文章,對於小小白來說,因為我剛開始學python,我得承認自己看完後依然覺得雲裡霧裡的,不知道這些庫到底對我有什麼用處。所以我到網絡上搜集補充關於這些庫的說明內容,感覺在這個整理資料的過程中,對於這些python程序庫了解了更多,以下是我整理的學習筆記。
  • Python的武器庫04:numpy模塊(上)
    說到程式語言python,有一個著名的格言"餘生太短,只用python"。如果要分析為什麼會存在這麼一句格言?python的語法並不簡單,有複雜難懂的部分,之所以又這樣一句格言,是因為python中有很多強大的模塊,就像一個武器庫。Python正式由於這些模塊的出現,只要引入這個模塊,調用這個模塊的集成函數,問題迎刃而解;不需要從頭開始,節省了大量的時間。
  • Python中的Numpy基礎20問
    import numpy as np# 創建二維數組x2 = np.array([[1,2,3],[4,5,6]])# 將x2轉換為三維數組,並且自定義每個軸的元素數量x2.resize((1,2,3))x2'''輸出:array([[[1, 2, 3],[4, 5, 6]]])'''如何對數組進行索引和切片操作?numpy一維數組的索引和切片操作類似python列表,這裡不多講。
  • python數據科學系列:numpy入門詳細教程
    numerical python縮寫,提供了底層基於C語言實現的數值計算庫,與python內置的list和array數據結構相比,其支持更加規範的數據類型和極其豐富的操作接口,速度也更快numpy的兩個重要對象是ndarray和ufunc,其中前者是數據結構的基礎,後者是接口方法的基礎ufunc,通函數,其意義是可以像執行標量運算一樣執行數組運算,本質即是通過隱式的循環對各個位置依次進行標量運算
  • Python:一篇文章掌握Numpy的基本用法
    本文主要內容如下:Numpy數組對象創建ndarray數組Numpy的數值類型ndarray數組的屬性ndarray數組的切片和索引處理數組形狀數組的類型轉換numpy常用統計函數數組的廣播1 Numpy數組對象Numpy中的多維數組稱為ndarray
  • 不懂NumPy 算什麼 Python 程式設計師?|CSDN 博文精選
    list VS ndarraynumpy 的核心是 ndarray 對象(numpy 數組),它封裝了 python 原生的同數據類型的 n 維數組(python 數組)。numpy 數組和 python 數組之間有幾個重要的區別:numpy 數組一旦創建,其元素數量就不能再改變了。增刪 ndarray 元素的操作,意味著創建一個新數組並刪除原來的數組。
  • 如果不懂Numpy,請別說自己是Python程式設計師
    了解 numpy之後,我才想明白當初磁層頂的三維模型之所以慢,是因為使用了 list(python 數組)而不是 ndarray(numpy 數組)存儲數據。有了 numpy,python 程式設計師才有可能寫出媲美 C 語言運行速度的代碼。
  • Numpy學習打卡task01
    今天帶來的是Datawhale自主學習Numpy下學習打卡筆記第一部分—輸入輸出(為什麼沒有上,別問,問就是numpy.tan(90))。本文大致介紹了numpy的相關背景知識。本文素材來自網絡及datawhale,糾錯指正、深入探討,咱們評論區見。
  • Python模塊NumPy,Pandas,matplotlib的中文文檔
    今天比較忙所以不能寫長文了作為一名數據工程師需要熟練掌握python中的這些numpy,matplotlib,pandas,sklearn,seaborn,statsmodel.模塊但是由於這些模塊的文檔都是英文的可能一些英文不好的同學學起來會比較的困難,所以我從網上給大家找到一些中文的文檔
  • numpy中的數據類型對象有哪些
    Numpy數據類型numpy是一個python擴展包,它可以為我們提供更精確的科學技術,更強大的數學能力。為此,numpy定義了比python更豐富的數據類型來達成目的。數據類型以上就是一系列Numpy中提供的數據類型。需要理解的是,Numpy中的數據類型,和python本身的數據類型是不同的。Numpy中的數據類型,實質是數據類型對象dtype的實例。
  • Python數據分析之numpy學習(一)
    本期將會涉及到Python模塊中的numpy,這是一個處理數組的強大模塊,而該模塊也是其他數據分析模塊(如pandas和scipy)的核心。一維數組的創建可以使用numpy中的arange()函數創建一維有序數組,它是內置函數range的擴展版。
  • Python學習120課 pandas簡介kaggle下載數據及pandas讀取外部數據
    【每天幾分鐘,從零入門python編程的世界!】numpy的基本的東西我們學習差不多了,後面具體應用中遇到問題具體分析,然後去深入了解遇到的新的知識點就行。現在我們開始學習pandas,pandas一般用的更多,pandas是基於numpy去寫的。pandas是一個專門做數據結構和數據分析的庫。