一款高效反激式開關電源的設計以及性能測試

2020-11-27 電子產品世界

由於傳統開關電源存在對電網造成諧波汙染以及工作效率低等問題,因此目前國內外各類開關電源研究機構正努力尋求運用各種高新技術改善電源性能。.其中,在開關電源設計中通過功率因數校正PFC(Power Factor Correction)技術降低電磁汙染及利用同步整流技術提高效率的研發途徑尤其受到重視。

本文設計並製作了一種高效低電磁汙染的開關電源樣機。測試結果表明,該電源具有優良的動態性能、較高的功率因數和工作效率,且控制簡單,故具有一定的實際應用價值。

開關電源設計方案

開關電源的結構如圖1所示,它主要由220V交流電壓整流及濾波電路、功率因數校正電路、DC/DC變換器三大部分組成。


220V交流電經整流供給功率因數校正電路,採用Boost型PFC來提高電源的輸入功率因數,同時降低了諧波電流,從而減小了諧波汙染。PFC的輸出為一直流電壓UC,通過DC/DC變換可將該電壓變換成所要求的兩輸出直流電壓Uo1(12V)和Uo2(24V)。


從圖中可以看出,本電源系統設計的關鍵是在整流濾波器和DC/DC變換器之間加入了功率因數校正電路,使輸入電流受輸入電壓嚴格控制,以實現更高的功率因數。同時設計中還採用同步整流技術以減少整流損耗,提高DC/DC變換效率。選用反激式準諧振DC/DC變換器,既能增強對輸入電壓變化的適應能力,又可以降低工作損耗。

為保證開關電源的性能,電源實際製作時還附加了一些電路:(1)保護電路。防止負載本身的過壓、過流或短路;(2)軟啟動控制電路。它能保證電源穩定、可靠且有序地工作,防止啟動時電壓電流過衝;(3)浪湧吸收電路。防止因浪湧電壓電流而引起輸出紋波峰-峰值過高及高頻輻射和高次諧波的產生。

開關電源主要器件選擇

1、APFC晶片及控制方案

電源中功率因數校正電路以Infineon(英飛凌)公司生產的TDA4863晶片為核心,電路如圖2所示。開關管VT1選用增強型MOSFET。具體控制方案為:從負載側A點反饋取樣,引入雙閉環電壓串聯負反饋,以穩定DC/DC變換器的輸入電壓和整個系統的輸出電壓。


2、準諧振DC/DC變換器


DC/DC變換器的類型有多種[7],為了保證用電安全,本設計方案選為隔離式。隔離式DC/DC變換形式又可進一步細分為正激式、反激式、半橋式、全橋式和推挽式等。其中,半橋式、全橋式和推挽式通常用於大功率輸出場合,其激勵電路複雜,實現起來較困難;而正激式和反激式電路則簡單易行,但由於反激式比正激式更適應輸入電壓有變化的情況,且本電源系統中PFC輸出電壓會發生較大的變化,故本設計中的 UC/UO變換採用反激方式,有利於確保輸出電壓穩定不變。

本設計採用ONSMEI(安森美)準諧振型PWM驅動晶片NCP1207,它始終保持在MOSFET漏極電壓最低時開通,改善了開通方式,減小了開通損耗。


圖3是利用NCP1207晶片設計的DC/DC反激式變換器電路,其工作原理為:PFC輸出直流電壓UO,一路直接接變壓器初級線圈L1,另一路經電阻R3 接到NCP1207高壓端8腳,使電路起振,形成軟啟動電路;NCP1207的5腳輸出驅動脈衝開通開關管VT,L1存儲能量,當驅動關閉時,線圈L2和 L3釋放能量,次級經整流濾波後供電給負載,輔助線圈釋放能量,一部分經整流濾波供電給VCC,形成自舉電路,另一部分經電阻R1和R2分壓後送到 NCP1207的1腳,來判斷VT軟開通時刻;光耦P1反饋來自輸出電壓的信號,經電阻R7和電容C2組成積分電路濾波後送入NCP1207的2腳,以調節輸出電壓的穩定,此為電壓反饋環節。電阻R6取樣主電流信號,經串聯電阻R5和電容C4組成積分電路濾波後送入NCP1207的3腳,此為電流反饋環節。


3、同步整流管

電源系統採用電流驅動同步整流技術,基本思路是通過使用低通態電阻的MOSFET代替DC/DC變換器輸出側的整流二極體工作,以最大限度地降低整流損耗,即通過檢測流過自身的電流來獲得MOSFET驅動信號,VT1在流過正向電流時導通,而當流過自身的電流為零時關斷,使反相電流不能流過VT1,故MOSFET與整流二極體一樣只能單向導通。

選擇同步整流管主要是考慮管子的通態電流要大,通態電阻小,反向耐壓足夠大(應按24V時變壓器次級變換反向電壓計 算),且寄生二極體反向恢復時間要短。經對實際電路的分析計算,選用ONSEMI公司生產的 MTY100N10E的MOSFET管,其耐壓100V,通態電流為100A,通態電阻為11MΩ,反向恢復時間為145ns,開通延遲時間和關斷延遲時間分別為48ns和186ns,能滿足系統工作要求。

降耗及降電磁汙染的手段

1、降耗措施

(1)利用TDA4863晶片優越性能

TDA4863 的性能特點是:當輸入電壓較高時,片內APFC電路從電網中吸取較多的功率;反之,當輸入電壓較低時則吸收較少的功率,這就抑制了產生諧波電流,使功率因數接近單位功率因數;片內還包含有源濾波電路,能濾除因輸出電壓脈動而產生的諧波電流;晶片的微電流工作條件也降低了元器件的損耗。

(2)電壓電流雙閉環反饋

因整機系統形成雙閉環系統,DC/DC變換器輸出穩定電壓時既增大了輸入電阻又減小輸出電阻,達到了閉環控制的目的。變換器在較大功率時呈現同步整流方式,較小功率時開關管、整流管均為零電壓開通,同步整流或零電壓開通都極大地降低了管耗。


相關焦點

  • 單端反激式開關電源的設計及仿真研究
    隨著電源技術的飛速發展,高頻化、小型化、集成化成為開關穩壓電源的發展趨勢。單端反激式開關電源不僅具有體積小、效率高、線路簡潔、可靠性高的優點,而且有自動均衡各路輸出負載的能力,所以常常被用於設計大功率高頻開關電源的輔助電源或功率開關的驅動電源[1-2]。PSPICE軟體是EDA領域最負盛名的公司ORCAD所開發的通用電路模擬仿真軟體。
  • 基於UCC28600的準諧振反激式開關電源的設計方案
    基於UCC28600的準諧振反激式開關電源的設計方案 李惺,靳麗等 發表於 2014-01-08 11:16:32   本文提出了一種基於UCC28600控制器的準諧振反激式開關電源的設計方案
  • 一款實用高性能開關電源的設計與實現
    摘要:採用有源功率因數校正(APFC)及同步整流技術設計了一款實用反激式開關電源裝置。但傳統開關電源也存在對電網造成汙染以及工作效率低等問題,因此運用新技術改善開關電源性能已經成為目前國內外業界的研究熱點,而且在開關電源設計中通過功率因數校正(PowerFactorCorrection—PFC)技術降低電磁汙染及利用同步整流技術提高效率的研發途徑尤其受到重視。
  • InnoSwitch3反激式開關IC為何是牽引逆變器應急電源的理想選擇?
    深耕於高壓集成電路高能效功率變換領域的Power Integrations日前宣布InnoSwitch3-AQ已經開始量產,這是一款已通過AEC-Q100認證的反激式開關IC,並且集成了750 V MOSFET和次級側檢測功能。
  • 一種基於UCC28600準諧振反激式開關電源的方案
    本文提出了一種基於UCC28600控制器的準諧振反激式開關電源的設計方案,該方案分析了準諧振反激式開關電源的工作原理及實現方式,給出了電路及參數設計和選擇過程,以及實際工作開關波形。
  • 單端反激式開關電源變壓器設計的基本工作原理
    反激式變壓器的基本工作原理本文引用地址:http://www.eepw.com.cn/article/227441.htm圖一(a)為反激式變壓器的工作原理圖,其中,開關管VT1的導通和截止使得原邊繞組線圈產生交變電流信號
  • 一種反激式開關電源的變壓器EMC設計方法實現
    通過實驗驗證,與傳統的設計方法相比,該方法對傳導電磁幹擾(EMI)的抑制能力更強,且能降低變壓器的製作成本和工藝複雜程度。本方法同樣適用於其他形式的帶變壓器拓撲結構的開關電源。EMC設計已成為開關電源開發設計中必不可少的重要環節。傳導電磁幹擾(EMI)噪聲的抑制必須在產品開發初期就加以考慮。通常情況下,加裝電源線濾波器是抑制傳導EMI的必要措施l1l。但是,僅僅依靠電源輸入端的濾波器來抑制幹擾往往會導致濾波器中元件的電感量增加和電容量增大。而電感量的增加使體積增加;電容量的增大受到漏電流安全標準的限制。
  • 單端反激式開關電源中高頻變壓器的建模與仿真測試研究
    仿真實驗證明運用PExprt設計的高頻變壓器是正確可用的。4結束語 採用PExprt軟體對單端反激式開關電源中的高頻變壓器建立模型並運用ORCAD/PSPICE實現對高頻變壓器的仿真,可以驗證高頻變壓器設計的正確性和合理性,進而可以提高開關電源設計的合理性和可靠性。
  • 開關電源原理與設計(連載十六)正激式開關電源變壓器參數的計算
    正激式開關電源變壓器參數的計算本文引用地址:http://www.eepw.com.cn/article/227992.htm正激式開關電源變壓器參數的計算主要從這幾個方面來考慮。一個是變壓器初級線圈的匝數和伏秒容量,伏秒容量越大變壓器的勵磁電流就越小;另一個是變壓器初、次級線圈的匝數比,以及變壓器各個繞組的額定輸入或輸出電流或功率。關於開關電源變壓器的工作原理以及參數設計後面還要更詳細分析,這裡只做比較簡單的介紹。1-6-3-2-1.
  • 開關電源原理與設計(連載十七)正激式開關電源變壓器初、次級線圈...
    >輸出電壓一般是脈動直流的平均值,而脈動直流的平均值與控制開關的佔空比有關,因此,在計算正激式開關電源變壓器初、次級線圈的匝數比之前,首先要確定控制開關的佔空比D,把佔空比D確定之後,根據(1-77)式就可以計算出正激式開關電源變壓器的初、次級線圈的匝數比:Uo = Ua =nUi× Ton/T = Upa×D —
  • 開關電源正激式變壓器的工作原理解析
    正激式變壓器開關電源輸出電壓的瞬態控制特性和輸出電壓負載特性,相對來說比較好,因此,工作比較穩定,輸出電壓不容易產生抖動,在一些對輸出電壓參數要求比較高的場合,經常使用。 1-6-1.正激式變壓器開關電源工作原理 所謂正激式變壓器開關電源,是指當變壓器的初級線圈正在被直流電壓激勵時,變壓器的次級線圈正好有功率輸出。
  • 準諧振反激式電源設計之探討(05-100)
    低成本和高可靠性是離線電源設計中兩個最重要的目標。準諧振 (Quasi resonant) 設計為設計人員提供了可行的方法,以實現這兩個目標。準諧振技術降低了MOSFET的開關損耗,從而提高可靠性。
  • uc3844應用電路圖大全(充電器電路/開關電源電路/反激式變換電路)
    uc3844應用電路圖(一) 充電器的原理圖見圖13。單激式充電器啟動電路和半橋式不同,一般直接取自市電整流濾波後的平滑直流電,集成電路也以UC3842、UC3845和UC3844N為主,也有採用電路更加簡潔的三端開關式TOP226集成塊,UC38xx是電流控制PWM單輸出專用晶片。
  • 單端正激式開關電源的驅動電路的設計
    一、基於TOPSwith單片機開關電源的基本原理本文引用地址:http://www.eepw.com.cn/article/175680.htmTOPSwitch( Three - terminal Off
  • ...與設計(連載十七)正激式開關電源變壓器初、次級線圈匝數比的計算
    1-6-3-2-2.變壓器初、次級線圈匝數比的計算本文引用地址:http://www.eepw.com.cn/article/227981.htm正激式開關電源輸出電壓一般是脈動直流的平均值,而脈動直流的平均值與控制開關的佔空比有關,因此,在計算正激式開關電源變壓器初
  • 雙激式開關變壓器內部損耗分析
    首先雙激式變壓器初級線圈輸入的電壓是雙極性脈衝,電源在正負半周期間都向它提供能量。其次,單激式變壓器鐵芯是靠變壓器初級線圈自身產生的反電動勢在電路中產生的電流進行退磁的,而雙激式變壓器鐵芯,除了靠變壓器初級線圈自身產生的反電動勢在電路中產生的電流進行退磁之外,當另一反極性電壓脈衝加到變壓器初級線圈上時,原勵磁電流存儲的能量還可以反饋給換相輸入電壓進行充電。
  • 反激式、正激式、推挽式、半橋式、全橋式開關電源的優點和缺點
    正激:其脈衝變壓器的原/副邊相位關係確保在開關管導通,驅動脈衝變壓器原邊時,變壓器副邊同時對負載供電。反激式電路與正激式電路相反,其脈衝變壓器的原/副邊相位關係確保當開關管導通,驅動脈衝變壓器原邊時,變壓器副邊不對負載供電,即原/副邊交錯通斷。
  • 醫用開關電源設計方案
    文章介紹的設計方案採用單端反激式結構,實現寬電壓輸入,穩定的直流輸出,具有輸入紋波小,輸出穩定,體積小,質量輕,效高,電磁兼容好等優點,能夠很好地滿足醫療設備供電需求。引言近年來隨著電源技術的飛速發展,開關穩壓電源與同容量的線性穩壓電源相比,具有效率高,功率低,體積小,質量輕等優點。
  • 介紹開關電源PCB設計中的走線技巧
    文章主要是討論和分析開關電源印製板布線原則、開關電源印製板銅皮走線的一些事項、開關電源印製板大電流走線的處理以及反激電源反射電壓的一個確定因素等方面
  • 開關電源的變壓器 EMC 設計
    對於帶變壓器拓撲結構的開關電源來說,變壓器的電磁兼容性(EMC)設計對整個開關電源的EMC水平影響較大。本文以一款反激式開關電源為例,闡述了其傳 導共模幹擾的產生、傳播機理。根據噪聲活躍節點平衡的思想,提出了一種新的變壓器EMC設計方法。通過實驗驗證,與傳統的設計方法相比,該方法對傳導電磁 幹擾(EMI)的抑制能力更強,且能降低變壓器的製作成本和工藝複雜程度。