雙激式開關變壓器內部損耗分析

2021-01-08 電子產品世界

  在雙激式變壓器鐵芯中,磁滯損耗也是由流過變壓器初級線圈勵磁電流產生的磁場在鐵芯中產生的;但在單激式變壓器鐵芯中,有一部分勵磁電流存儲的能量要轉化成反激式電壓向負載輸出;而在雙激式變壓器鐵芯中,勵磁電流產生的能量基本上都是用於充磁與消磁。

  雙激式變壓器鐵芯的磁滯損耗和渦流損耗在工作原理上與單激式變壓器鐵芯的磁滯損耗和渦流損耗是有區別的。

  首先雙激式變壓器初級線圈輸入的電壓是雙極性脈衝,電源在正負半周期間都向它提供能量。其次,單激式變壓器鐵芯是靠變壓器初級線圈自身產生的反電動勢在電路中產生的電流進行退磁的,而雙激式變壓器鐵芯,除了靠變壓器初級線圈自身產生的反電動勢在電路中產生的電流進行退磁之外,當另一反極性電壓脈衝加到變壓器初級線圈上時,原勵磁電流存儲的能量還可以反饋給換相輸入電壓進行充電。

  在雙激式變壓器鐵芯中,磁滯損耗也是由流過變壓器初級線圈勵磁電流產生的磁場在鐵芯中產生的;但在單激式變壓器鐵芯中,有一部分勵磁電流存儲的能量要轉化成反激式電壓向負載輸出;而在雙激式變壓器鐵芯中,勵磁電流產生的能量基本上都是用於充磁與消磁。因此,雙激式變壓器鐵芯的磁滯回線的面積比單激式變壓器鐵芯磁滯回線的面積大很多,磁滯損耗也大很多。

  雙激式變壓器鐵芯渦流損耗的機理與單激式變壓器鐵芯渦流損耗的機理基本是一樣的,但雙激式變壓器鐵芯的渦流損耗要比單激式變壓器鐵芯的渦流損耗大很多,因為,雙激式變壓器鐵芯的磁通密度變化範圍比單激式變壓器鐵芯的磁通密度變化範圍大很多。

  根據(2-65)式和(2-66)式以及圖2-19和圖2-20的分析結果,我們可以用圖2-27電路來測試雙激式開關變壓器的磁滯損耗和渦流損耗。與圖2-25的工作原理基本相同,圖2-27的主要工作原理是,在變壓器初級線圈兩端加一序列雙極性電壓方波,然後測試流過變壓器初級線圈的電流;

  

  

  根據前面分析,磁滯損耗主要由勵磁電流 產生的,但雙激式開關變壓器初級線圈中的勵磁電流與單激式開關變壓器初級線圈中的勵磁電流產生的作用並不完全相同。單激式開關變壓器初級線圈中的勵磁電流產生磁場對變壓器貼芯進行充磁和退磁外,其存儲的能量只能用來作為反激式輸出給負載,因為變壓器初級線圈輸入的電壓是單極性脈衝,變壓器初級線圈無法換相。

而雙激式開關變壓器初級線圈中的勵磁電流除了用來消磁和充磁以外(即轉換成磁滯損耗),其存儲的能量還可以反饋給換相輸入電壓進行充電,因為勵磁電流存儲的能量產生反電動勢的方向正好與換相時輸入電壓的方向相反,兩者作用互相對消,使原來流過初級線圈中的勵磁電流由最大值迅速下降到0,即:反電動勢的能量被迅速轉移到輸入電路中,相當於能量被重複利用。

  圖2-27中,U是電源電壓,N為變壓器初級線圈,控制開關K1、K2、K3、K4組成橋式開關控制電路,K1和K4為一組,K2和K3為一組,兩組開關輪流接通與斷開,把電源電壓正反向加於變壓器初級線圈兩端;R為取樣電阻,通過測量R兩端的電壓,就可以知道流過變壓器初級線圈的電流;取樣電壓被送到示波器Dp進行顯示。

  圖2-28是圖2-27電路中變壓器初級線圈兩端電壓、電流以及取樣電阻上的電壓波形圖。圖2-28-a是變壓器初級線圈兩端的電壓波形;圖2-28-b是流過變壓器初級線圈兩端的電流波形;圖2-28-c是取樣電阻兩端的電壓波形。

  

 

  

  

  


相關焦點

  • 減少開關電源變壓器損耗方法與開關電源變壓器的渦流損耗分析
    開關電源變壓器是加入了開關管的電源變壓器,在電路中除了普通變壓器的電壓變換功能,還兼具絕緣隔離與功率傳送功能一般用在開關電源等涉及高頻電路的場合。開關電源變壓器和開關管一起構成一個自激(或他激)式的間歇震蕩器,從而把輸入直流電壓調製成一個高頻脈衝電壓。
  • 變壓器鐵芯的渦流損耗分析
    開關電源變壓器的渦流損耗在開關電源的總損耗中所佔的比例很大,如何降低開關電源變壓器的渦流損耗,是開關電源變壓器或開關電源設計的一個重要內容。  開關電源變壓器的渦流損耗在開關電源的總損耗中所佔的比例很大,如何降低開關電源變壓器的渦流損耗,是開關電源變壓器或開關電源設計的一個重要內容。
  • 開關電源原理與設計(連載十六)正激式開關電源變壓器參數的計算
    正激式開關電源變壓器參數的計算本文引用地址:http://www.eepw.com.cn/article/227992.htm正激式開關電源變壓器參數的計算主要從這幾個方面來考慮。一個是變壓器初級線圈的匝數和伏秒容量,伏秒容量越大變壓器的勵磁電流就越小;另一個是變壓器初、次級線圈的匝數比,以及變壓器各個繞組的額定輸入或輸出電流或功率。關於開關電源變壓器的工作原理以及參數設計後面還要更詳細分析,這裡只做比較簡單的介紹。1-6-3-2-1.
  • 開關電源正激式變壓器的工作原理解析
    正激式變壓器開關電源輸出電壓的瞬態控制特性和輸出電壓負載特性,相對來說比較好,因此,工作比較穩定,輸出電壓不容易產生抖動,在一些對輸出電壓參數要求比較高的場合,經常使用。 1-6-1.正激式變壓器開關電源工作原理 所謂正激式變壓器開關電源,是指當變壓器的初級線圈正在被直流電壓激勵時,變壓器的次級線圈正好有功率輸出。
  • 開關電源原理與設計(連載十七)正激式開關電源變壓器初、次級線圈...
    >輸出電壓一般是脈動直流的平均值,而脈動直流的平均值與控制開關的佔空比有關,因此,在計算正激式開關電源變壓器初、次級線圈的匝數比之前,首先要確定控制開關的佔空比D,把佔空比D確定之後,根據(1-77)式就可以計算出正激式開關電源變壓器的初、次級線圈的匝數比:Uo = Ua =nUi× Ton/T = Upa×D —
  • ...與設計(連載十七)正激式開關電源變壓器初、次級線圈匝數比的計算
    1-6-3-2-2.變壓器初、次級線圈匝數比的計算本文引用地址:http://www.eepw.com.cn/article/227981.htm正激式開關電源輸出電壓一般是脈動直流的平均值,而脈動直流的平均值與控制開關的佔空比有關,因此,在計算正激式開關電源變壓器初
  • 基於UCC28600的準諧振反激式開關電源的設計方案
    ,該方案分析了準諧振反激式開關電源的工作原理及實現方式,給出了電路及參數設計和選擇過程,以及實際工作開關波形。本文將闡述準諧振反激式轉換器是如何提高電源效率以及如何用UCC28600設計準諧振電源。   1 常規的硬開關反激電路   圖1 所示為常規的硬開關反激式轉換器電路。
  • 單端反激式開關電源變壓器設計的基本工作原理
    反激式變壓器的基本工作原理本文引用地址:http://www.eepw.com.cn/article/227441.htm圖一(a)為反激式變壓器的工作原理圖,其中,開關管VT1的導通和截止使得原邊繞組線圈產生交變電流信號
  • 雙開關正激轉換器原理介紹及其應用設計
    相對而言,如果有磁芯復位,電流就不會在每個開關周期增大,電壓會基於勵磁電感(Lmag)反相併使磁芯復位。圖1以單開關正激轉換器為例,簡要對比了無磁芯復位與有磁芯復位的電路圖及勵磁電感電流波形。  有3種常見的標準磁芯復位技術,分別是三次繞組,電阻、電容、二極體(RCD)鉗位和雙開關正激。
  • 一種基於UCC28600準諧振反激式開關電源的方案
    本文提出了一種基於UCC28600控制器的準諧振反激式開關電源的設計方案,該方案分析了準諧振反激式開關電源的工作原理及實現方式,給出了電路及參數設計和選擇過程,以及實際工作開關波形。
  • 一款高效反激式開關電源的設計以及性能測試
    同時設計中還採用同步整流技術以減少整流損耗,提高DC/DC變換效率。選用反激式準諧振DC/DC變換器,既能增強對輸入電壓變化的適應能力,又可以降低工作損耗。 為保證開關電源的性能,電源實際製作時還附加了一些電路:(1)保護電路。防止負載本身的過壓、過流或短路;(2)軟啟動控制電路。
  • 一種反激式開關電源的變壓器EMC設計方法實現
    通過實驗驗證,與傳統的設計方法相比,該方法對傳導電磁幹擾(EMI)的抑制能力更強,且能降低變壓器的製作成本和工藝複雜程度。本方法同樣適用於其他形式的帶變壓器拓撲結構的開關電源。本文提出了變壓器的噪聲活躍節點相位乾燥繞法,這種設計方法不僅能減少電源線濾波器的體積,還能降低成本。反激式開關電源的共模傳導幹擾電子設備的傳導噪聲幹擾指的是:設備在與供電電網連接工作時以噪聲電流的形式通過電源線傳導到公共電網環境中去的電磁幹擾。傳導幹擾分為共模幹擾與差模幹擾兩種。
  • 開關變壓器之鐵芯磁滯損耗分析
    由於變壓器鐵芯存在磁矯頑力,當磁場反覆對變壓器鐵芯進行磁化時,總需要額外地有一部分磁場能量被用來克服磁矯頑力和消除剩餘磁通,這一部分用來克服磁矯頑力和消除剩餘磁通的磁場能量,對於變壓器鐵芯來說,是不起增強磁通密度作用的,它屬於一種損耗;本文用迴路曲線模型來分析計量這種損耗
  • 單端反激式開關電源的設計及仿真研究
    PSPICE具有良好的人機界面和控制方式,通過波形分析窗口,用戶可以方便觀察輸出波形的性質,對電路的設計有重要的指導意義。2單端反激式開關電源的基本原理 開關電源是將交流輸入(單相或三相)電壓變成所需的直流電壓的裝置。電路主要由輸入電磁幹擾濾波電路、輸入整流濾波電路、功率變換電路、輸出整流濾波電路等組成。
  • 單端反激式開關電源中高頻變壓器的建模與仿真測試研究
    仿真實驗證明運用PExprt設計的高頻變壓器是正確可用的。4結束語 採用PExprt軟體對單端反激式開關電源中的高頻變壓器建立模型並運用ORCAD/PSPICE實現對高頻變壓器的仿真,可以驗證高頻變壓器設計的正確性和合理性,進而可以提高開關電源設計的合理性和可靠性。
  • 開關電源變壓器的鐵心磁滯回線測量與匝間短路的判斷
    現代電子設備對電源的工作效率和體積以及安全要求越來越高,在開關電源中決定工作效率和體積以及安全要求的諸多因素,基本上都與開關變壓器有關,而與開關變壓器技術性能相關最大的要算是變壓器的鐵芯材料。變壓器的鐵芯材料的磁滯損耗和渦流損耗大小是決定變壓器的鐵芯材料技術性能好壞的最重要因素。因此,對變壓器的鐵芯材料進行磁滯回線測量是必要的。
  • 安森美案例:雙開關正激轉換器及其應用設計
    正激轉換器中,變壓器的磁芯單方向磁化,在每個開關周期都需要採用相應的措施來使磁芯復位到初始值,否則勵磁電流會在每個開關周期增大,經歷幾個周期後會使磁芯飽和,損壞開關器件。相對而言,如果有磁芯復位,電流就不會在每個開關周期增大,電壓會基於勵磁電感(Lmag)反相併使磁芯復位。
  • 變壓器原理
    1,工作過程詳解:  開關變壓器一般都是工作於開關狀態;當輸入電壓為直流脈衝電壓時,稱為單極性脈衝輸入,如單激式變壓器開關電源;當輸入電壓為交流脈衝電壓時,稱為雙極性脈衝輸入,如雙激式變壓器開關電源;因此,開關變壓器也可以稱為脈衝變壓器,因為其輸入電壓是一序列脈衝;不過要真正較量起來的時候,開關變壓器與脈衝變壓器在工作原理上還是有區別的,因為開關變壓器還分正、反激輸出
  • 開關電源變壓器解析,如何判斷開關電源變壓器的好壞
    開關電源變壓器和開關管一起構成一個自激(或他激)式的間歇 振蕩器,從而把輸入直流電壓調製成一個高頻脈衝電壓。起到能量傳遞和轉換作用。在反激式電路中, 當開關管導通時,變壓器把電能轉換成磁場能儲存起來,當開關管截止時則釋放出來。 在正激式電路中,當開關管導通時,輸入電壓直接向負載供給並把能量儲存在儲能電感中。當開關管截止時,再由儲能電感進行續 流向負載傳遞。把輸入的直流電壓轉換成所需的各種低壓。
  • 如何計算反激式變壓器開關電源電路參數
    反激式變壓器開關電源電路參數計算基本上與正激式變壓器開關電源電路參數計算一樣,主要對儲能濾波電感、儲能濾波電容,以及開關電源變壓器的參數進行計算。