www.arxivdaily.com上線啦,論文摘要、多學科、收藏、評論、搜索……,點擊文末「閱讀原文」即可訪問
cs.CV 方向,今日共計73篇
[檢測分類相關]:
【1】 Firearm Detection via Convolutional Neural Networks: Comparing a Semantic Segmentation Model Against End-to-End Solutions
標題:基於卷積神經網絡的槍枝檢測:語義分割模型與端到端解決方案的比較
作者:Alexander Egiazarov,Fabio Massimo Zennaro,Vasileios Mavroeidis
機構:Digital Security Group, University of Oslo, Oslo, Norway
備註:10 pages, 5 figures, presented at CyberHunt workshop at IEEE Big Data Conference
連結:https://arxiv.org/abs/2012.09662
【2】 Detection and Prediction of Nutrient Deficiency Stress using Longitudinal Aerial Imagery
作者:Saba Dadsetan,Gisele Rose,Naira Hovakimyan,Jennifer Hobbs
機構:IntelinAir, Inc., Champaign, IL , University of Pittsburgh, Pittsburgh, PA , University of Illinois at Urbana Champaign, Urbana, IL
連結:https://arxiv.org/abs/2012.09654
【3】 Trajectory saliency detection using consistency-oriented latent codes from a recurrent auto-encoder
標題:基於遞歸自動編碼器的面向一致性潛碼的軌跡顯著性檢測
作者:L. Maczyta,P. Bouthemy,O. Le Meur
連結:https://arxiv.org/abs/2012.09573
【4】 PanoNet3D: Combining Semantic and Geometric Understanding for LiDARPoint Cloud Detection
標題:PanoNet3D:結合語義和幾何理解的雷射雷達點雲檢測
作者:Xia Chen,Jianren Wang,David Held,Martial Hebert
機構:Robotics Institute, Carnegie Mellon University, Forbes Ave, Pittsburgh, Pennsylvania
備註:3DV2020
連結:https://arxiv.org/abs/2012.09418
【5】 Efficient Golf Ball Detection and Tracking Based on Convolutional Neural Networks and Kalman Filter
標題:基於卷積神經網絡和卡爾曼過濾的高效高爾夫球檢測與跟蹤
作者:Tianxiao Zhang,Xiaohan Zhang,Yiju Yang,Zongbo Wang,Guanghui Wang
機構:University of Kansas, Lawrence, KS , USA, Ainstein Inc., Lawrence, Kansas, USA, Ryerson University, Toronto, ON, Canada M,B ,K
連結:https://arxiv.org/abs/2012.09393
【6】 Learning to Recognize Patch-Wise Consistency for Deepfake Detection
作者:Tianchen Zhao,Xiang Xu,Mingze Xu,Hui Ding,Yuanjun Xiong,Wei Xia
機構:AmazonAWS AI
備註:13 pages, 7 figures
連結:https://arxiv.org/abs/2012.09311
【7】 Kernelized Classification in Deep Networks
作者:Sadeep Jayasumana,Srikumar Ramalingam,Sanjiv Kumar
機構:Google Research, New York
連結:https://arxiv.org/abs/2012.09607
【8】 MELINDA: A Multimodal Dataset for Biomedical Experiment Method Classification
標題:Melinda:一種用於生物醫學實驗方法分類的多模態數據集
作者:Te-Lin Wu,Shikhar Singh,Sayan Paul,Gully Burns,Nanyun Peng
機構: University of California, Los Angeles, University of Southern California, Intuit Inc., Chan Zuckerberg Initiative
備註:In The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21), 2021
連結:https://arxiv.org/abs/2012.09216
[分割/語義相關]:
【1】 Embodied Visual Active Learning for Semantic Segmentation
作者:David Nilsson,Aleksis Pirinen,Erik Gärtner,Cristian Sminchisescu
機構:Google Research
備註:Accepted to AAAI 2021
連結:https://arxiv.org/abs/2012.09503
【2】 Unlabeled Data Guided Semi-supervised Histopathology Image Segmentation
作者:Hongxiao Wang,Hao Zheng,Jianxu Chen,Lin Yang,Yizhe Zhang,Danny Z. Chen
機構:Jianxu chen, University of Notre Dame, Allen Institute for Cell Science, Notre Dame, IN , USA, Seattle, WA , USA
備註:Accepted paper for the 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
連結:https://arxiv.org/abs/2012.09373
【3】 S3CNet: A Sparse Semantic Scene Completion Network for LiDAR Point Clouds
標題:S3CNet:一種面向LiDAR點雲的稀疏語義場景補全網絡
作者:Ran Cheng,Christopher Agia,Yuan Ren,Xinhai Li,Liu Bingbing
備註:14 pages
連結:https://arxiv.org/abs/2012.09242
【4】 A Contrast Synthesized Thalamic Nuclei Segmentation Scheme using Convolutional Neural Networks
標題:一種基於卷積神經網絡的對比合成丘腦核團分割方法
作者:Lavanya Umapathy,Mahesh Bharath Keerthivasan,Natalie M. Zahr,Ali Bilgin,Manojkumar Saranathan
機構:Electrical and Computer Engineering, University of Arizona, Tucson, AZ, United States, Medical Imaging, University of Arizona, Tucson, AZ, United States, Psychiatry Behavioral Sciences, Stanford University, Menlo Park, CA, United States, Biomedical Engineering, University of Arizona, Tucson, AZ, United States, Corresponding Author:, Associate Professor, University of Arizona, Tucson, AZ , SUBMITTED TO NEUROINFORMA DECEMBER,
備註:24 pages, 7 figures, submitted to Neuroinformatics December 2020
連結:https://arxiv.org/abs/2012.09386
【5】 Spatial Context-Aware Self-Attention Model For Multi-Organ Segmentation
作者:Hao Tang,Xingwei Liu,Kun Han,Shanlin Sun,Narisu Bai,Xuming Chen,Huang Qian,Yong Liu,Xiaohui Xie
備註:Accepted WACV 2021
連結:https://arxiv.org/abs/2012.09279
【6】 Transfer Learning Through Weighted Loss Function and Group Normalization for Vessel Segmentation from Retinal Images
標題:基於加權損失函數和分組歸一化的轉移學習在視網膜圖像血管分割中的應用
作者:Abdullah Sarhan,Jon Rokne,Reda Alhajj,Andrew Crichton
機構:University of Calgary, Alberta, Canada, Istanbul Medipol University, Istanbul, Turkey, University of Southern Denmark, Odense, Denmark
備註:Accepted by ICPR. arXiv admin note: text overlap with arXiv:2010.00583
連結:https://arxiv.org/abs/2012.09250
[人臉相關]:
【1】 Incremental Learning from Low-labelled Stream Data in Open-Set Video Face Recognition
作者:Eric Lopez-Lopez,Carlos V. Regueiro,Xose M. Pardo
機構:CITIC, Universidade da Coruna, CiTIUS, Universidade de Santiago de Compostela, December
備註:17 pages, 10 figures
連結:https://arxiv.org/abs/2012.09571
【2】 Shape My Face: Registering 3D Face Scans by Surface-to-Surface Translation
標題:Shape My Face:通過面間平移註冊3D人臉掃描
作者:Mehdi Bahri,Eimear O' Sullivan,Shunwang Gong,Feng Liu,Xiaoming Liu,Michael M. Bronstein,Stefanos Zafeiriou
機構:Received: dateAccepted:date
備註:In review with International Journal of Computer Vision (IJCV)
連結:https://arxiv.org/abs/2012.09235
[GAN/對抗式/生成式相關]:
【1】 A Hierarchical Feature Constraint to Camouflage Medical Adversarial Attacks
作者:Qingsong Yao,Zecheng He,Yi Lin,Kai Ma,Yefeng Zheng,S. Kevin Zhou
機構:ICT, CAS, Princeton University, Tencent Jarvis Lab, Shaohua Kevin Zhou
連結:https://arxiv.org/abs/2012.09501
【2】 Roof-GAN: Learning to Generate Roof Geometry and Relations for Residential Houses
標題:Roof-GAN:學習生成住宅的屋頂幾何圖形和關係
作者:Yiming Qian,Hao Zhang,Yasutaka Furukawa
機構:Simon Fraser University, Canada
連結:https://arxiv.org/abs/2012.09340
【3】 Combating Mode Collapse in GAN training: An Empirical Analysis using Hessian Eigenvalues
標題:GaN訓練中抗模式崩潰:基於Hessian特徵值的實證分析
作者:Ricard Durall,Avraam Chatzimichailidis,Peter Labus,Janis Keuper
機構:Fraunhofer ITWM, Germany, IWR, University of Heidelberg, Germany, Chair for Scientific Computing, TU Kaiserslautern, Germany, Fraunhofer Center Machine Learning, Germany, Institute for Machine Learning and Analytics, Offenburg University,Germany, Keywords: Generative Adversarial Network Second-Order Optimization, Mode Collapse, Stability, Eigenvalues.
連結:https://arxiv.org/abs/2012.09673
【4】 On the Limitations of Denoising Strategies as Adversarial Defenses
作者:Zhonghan Niu,Zhaoxi Chen,Linyi Li,Yubin Yang,Bo Li,Jinfeng Yi
機構:Nanjing University, Tsinghua University, UIUC, JD AI Research
連結:https://arxiv.org/abs/2012.09384
[行為/時空/光流/姿態/運動]:
【1】 End-to-End Human Pose and Mesh Reconstruction with Transformers
標題:基於Transformer的端到端人體姿勢和網格重建
作者:Kevin Lin,Lijuan Wang,Zicheng Liu
機構:Microsoft
連結:https://arxiv.org/abs/2012.09760
【2】 Weakly-Supervised Action Localization and Action Recognition using Global-Local Attention of 3D CNN
標題:基於三維CNN全局-局部注意力的弱監督動作定位與動作識別
作者:Novanto Yudistira,Muthu Subash Kavitha,Takio Kurita
機構:Intelligent System laboratory, Brawijaya University, Indonesia, Hiroshima University, Higashi-hiroshima, Japan
連結:https://arxiv.org/abs/2012.09542
【3】 Exploiting Learnable Joint Groups for Hand Pose Estimation
作者:Moran Li,Yuan Gao,Nong Sang
機構: Key Laboratory of Image Processing and Intelligent Control, Huazhong University of Science and Technology, Wuhan, China, Tencent AI Lab
備註:Accepted by AAAI2021
連結:https://arxiv.org/abs/2012.09496
【4】 Invariant Teacher and Equivariant Student for Unsupervised 3D Human Pose Estimation
標題:無監督三維人體姿態估計的不變教師和等變學生算法
作者:Chenxin Xu,Siheng Chen,Maosen Li,Ya Zhang
機構:Cooperative Medianet Innovation Center, Shanghai Jiao Tong University
備註:Accepted in AAAI 2021
連結:https://arxiv.org/abs/2012.09398
【5】 Clique: Spatiotemporal Object Re-identification at the City Scale
作者:Tiantu Xu,Kaiwen Shen,Yang Fu,Humphrey Shi,Felix Xiaozhu Lin
機構:Purdue ece Purdue ECE UIUC University of Oregon University of Virginia
連結:https://arxiv.org/abs/2012.09329
[半/弱/無監督相關]:
【1】 Unsupervised Learning of Local Discriminative Representation for Medical Images
作者:Huai Chen,Jieyu Li,Renzhen Wang,Yijie Huang,Fanrui Meng,Deyu Meng,Qing Peng,Lisheng Wang
機構:Wang-,-, Institute of Image Processing and Pattern Recognition, Xi'an Jiaotong University, Xi'an, P. R. China., Shanghai Tenth People's Hospital, Tongji, University, Shanghai,P. R. China.
備註:13 pages, 4 figures
連結:https://arxiv.org/abs/2012.09333
【2】 Self-Supervised Sketch-to-Image Synthesis
作者:Bingchen Liu,Yizhe Zhu,Kunpeng Song,Ahmed Elgammal
機構:Playform- Artrendex Inc., USA, Rutgers University
備註:AAAI-2021
連結:https://arxiv.org/abs/2012.09290
【3】 ISD: Self-Supervised Learning by Iterative Similarity Distillation
作者:Ajinkya Tejankar,Soroush Abbasi Koohpayegani,Vipin Pillai,Paolo Favaro,Hamed Pirsiavash
機構:University of Maryland, Baltimore County ,University of Bern
連結:https://arxiv.org/abs/2012.09259
【4】 uBAM: Unsupervised Behavior Analysis and Magnification using Deep Learning
標題:uBAM:基於深度學習的無監督行為分析與放大
作者:Biagio Brattoli,Uta Buechler,Michael Dorkenwald,Philipp Reiser,Linard Filli,Fritjof Helmchen,Anna-Sophia Wahl,Bjoern Ommer
機構:Equal first and last authorship, Affiliations:, Interdisciplinary Center for Scientific Computing Heidelberg Collaboratory for Image Process-, ing, Heidelberg University, Germany., University Hospital and University of Zurich, Zurich, Switzerland., Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland., Brain Research Institute, University of Zurich, Zurich, Switzerland., Neuroscience Center Zurich, Zurich, Switzerland., Central Institute of Mental Health, Heidelberg University, Mannheim, Germany, Correspondence to:
備註:under review
連結:https://arxiv.org/abs/2012.09237
【5】 A new semi-supervised self-training method for lung cancer prediction
作者:Kelvin Shak,Mundher Al-Shabi,Andrea Liew,Boon Leong Lan,Wai Yee Chan,Kwan Hoong Ng,Maxine Tan
機構:)Electrical and Computer Systems Engineering and Advanced Engineering Platform, Engineering, Monash University Malaysia, Bandar Sunway , Malaysia, University of Malaya, Kuala Lumpur, Malaysia, The University of Oklahoma, Norman, OK, USA
備註:23 pages, 6 figures
連結:https://arxiv.org/abs/2012.09472
[跟蹤相關]:
【1】 End-to-end Deep Object Tracking with Circular Loss Function for Rotated Bounding Box
標題:基於圓形損失函數的旋轉包圍盒端到端深度目標跟蹤
作者:Vladislav Belyaev,Aleksandra Malysheva,Aleksei Shpilman
機構:JetBrains Research, National Research University, St. Petersburg, Russia
連結:https://arxiv.org/abs/2012.09771
[遷移學習/domain/主動學習/自適應]:
【1】 Learning Cross-Domain Correspondence for Control with Dynamics Cycle-Consistency
作者:Qiang Zhang,Tete Xiao,Alexei A. Efros,Lerrel Pinto,Xiaolong Wang
機構:Shanghai Jiao Tong University, UC Berkeley, New York University, UC San Diego
備註:Project page: this https URL
連結:https://arxiv.org/abs/2012.09811
[裁剪/量化/加速相關]:
【1】 Efficient CNN-LSTM based Image Captioning using Neural Network Compression
標題:基於CNN-LSTM的高效神經網絡壓縮圖像字幕
作者:Harshit Rampal,Aman Mohanty
機構:Carnegie Mellon University, amanmohaCandrew.cmu. edu
連結:https://arxiv.org/abs/2012.09708
【2】 Neural Pruning via Growing Regularization
作者:Huan Wang,Can Qin,Yulun Zhang,Yun Fu
機構:Northeastern University, Boston, MA, USA
連結:https://arxiv.org/abs/2012.09243
【3】 Learned Block-based Hybrid Image Compression
作者:Yaojun Wu,Xin Li,Zhizheng Zhang,Xin Jin,Zhibo Chen
機構:ICAS Key Laboratory of Technology in Geo-spatial Information Processing and Application System, University of Science and Technology of China, Hefei , China
備註:9 pages, 11 figures
連結:https://arxiv.org/abs/2012.09550
[視頻理解VQA/caption等]:
【1】 AutoCaption: Image Captioning with Neural Architecture Search
標題:AutoCaption:使用神經結構搜索的圖像字幕
作者:Xinxin Zhu,Weining Wang,Longteng Guo,Jing Liu
機構: National Lab of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, University of Chinese Academy of Sciences
連結:https://arxiv.org/abs/2012.09742
【2】 Robust Image Captioning
作者:Daniel Yarnell,Xian Wang
機構:Central Michigan University
連結:https://arxiv.org/abs/2012.09732
[數據集dataset]:
【1】 RainNet: A Large-Scale Dataset for Spatial Precipitation Downscaling
標題:RainNet:一種空間降水量的大規模數據集
作者:Xuanhong Chen,Kairui Feng,Naiyuan Liu,Naiyuan Liu,Zhengyan Tong,Bingbing Ni,Ziang Liu,Ning Lin
機構:Shanghai Jiao Tong University,Princeton University,University of Technology Sydney
備註:submit to CVPR2021
連結:https://arxiv.org/abs/2012.09700
【2】 CT Film Recovery via Disentangling Geometric Deformation and Illumination Variation: Simulated Datasets and Deep Models
標題:基於解纏幾何變形和光照變化的CT膠片恢復:模擬數據集和深度模型
作者:Quan Quan,Qiyuan Wang,Liu Li,Yuanqi Du,S. Kevin Zhou
機構:Institute of Computing Technology, CAS, Nanjing University, Imperial College London, George Mason University
連結:https://arxiv.org/abs/2012.09491
[超解析度]:
【1】 Deep Learning Techniques for Super-Resolution in Video Games
作者:Alexander Watson
機構:Informatics, Bournemouth University, Bournemouth, UK
備註:4 pages, 1 figure
連結:https://arxiv.org/abs/2012.09810
[點雲]:
【1】 PCT: Point Cloud Transformer
作者:Meng-Hao Guo,Jun-Xiong Cai,Zheng-Ning Liu,Tai-Jiang Mu,Ralph R. Martin,Shi-Min Hu
機構:Tsinghua University, Cardiff University
備註:10 pages, 5 figures
連結:https://arxiv.org/abs/2012.09688
【2】 FG-Net: Fast Large-Scale LiDAR Point CloudsUnderstanding Network Leveraging CorrelatedFeature Mining and Geometric-Aware Modelling
標題:FG-NET:利用關聯特徵挖掘和幾何感知建模的快速大規模LiDAR點雲理解網絡
作者:Kangcheng Liu,Zhi Gao,Feng Lin,Ben M. Chen
連結:https://arxiv.org/abs/2012.09439
[深度depth相關]:
【1】 Multi-Modal Depth Estimation Using Convolutional Neural Networks
作者:Sadique Adnan Siddiqui,Axel Vierling,Karsten Berns
機構:Robotics Research Lab, Dep. of Computer Science, TU Kaiserslautern, Kaiserslautern, Germany
備註:submitted to IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR)
連結:https://arxiv.org/abs/2012.09667
[3D/3D重建等相關]:
【1】 Worldsheet: Wrapping the World in a 3D Sheet for View Synthesis from a Single Image
標題:Worldsheet:將世界包裝在3D工作表中,以便從單個圖像合成視圖
作者:Ronghang Hu,Deepak Pathak
機構:Facebook AI Research, Carnegie Mellon University
備註:Videos and code on the project page at this https URL
連結:https://arxiv.org/abs/2012.09854
【2】 Learning to Recover 3D Scene Shape from a Single Image
作者:Wei Yin,Jianming Zhang,Oliver Wang,Simon Niklaus,Long Mai,Simon Chen,Chunhua Shen
機構:t The University of Adelaide, Australia, Adobe Research, - Top View Point Cloud, RGB, Predicted Depth Distorted Point Cloud, Recovered Shift Focal Length
連結:https://arxiv.org/abs/2012.09365
[其他視頻相關]:
【1】 Neural Radiance Flow for 4D View Synthesis and Video Processing
作者:Yilun Du,Yinan Zhang,Hong-Xing Yu,Joshua B. Tenenbaum,Jiajun Wu
機構:MIT CSAIL Stanford University, MIT CSAIL, BCS, CBMM
備註:Website: this https URL
連結:https://arxiv.org/abs/2012.09790
【2】 LIGHTEN: Learning Interactions with Graph and Hierarchical TEmporal Networks for HOI in videos
標題:Lightten:視頻中HOI的圖形和分層時間網絡學習交互
作者:Sai Praneeth Reddy Sunkesula,Rishabh Dabral,Ganesh Ramakrishnan
機構:Indian Institute of Technology, bombay, Bombay, Mumbai, Maharashtra, India, Mumbai,Maharashtra, India, Mumbai, Maharashtra,India, reaching, moving, cleaning, stationary, cleanable, movable, cleaner, reachable, throw, hold, hit, kick, ride, talk on phone
備註:9 pages, 6 figures, ACM Multimedia Conference 2020
連結:https://arxiv.org/abs/2012.09402
[其他]:
【1】 Reconstructing Hand-Object Interactions in the Wild
作者:Zhe Cao,Ilija Radosavovic,Angjoo Kanazawa,Jitendra Malik
機構:University of California, Berkeley
備註:Project page: this https URL
連結:https://arxiv.org/abs/2012.09856
【2】 Infinite Nature: Perpetual View Generation of Natural Scenes from a Single Image
作者:Andrew Liu,Richard Tucker,Varun Jampani,Ameesh Makadia,Noah Snavely,Angjoo Kanazawa
機構:Google Research, TRAIN, TEST, Output frames
連結:https://arxiv.org/abs/2012.09855
【3】 Human Mesh Recovery from Multiple Shots
作者:Georgios Pavlakos,Jitendra Malik,Angjoo Kanazawa
機構:University of California, Berkeley
連結:https://arxiv.org/abs/2012.09843
【4】 $\mathbb{X}$Resolution Correspondence Networks
作者:Georgi Tinchev,Shuda Li,Kai Han,David Mitchell,Rigas Kouskouridas
機構:University of Oxford, XYZ Reality, Oxford Robotics Insitute shuda .lixyzreality. com Visual Geometry Group
備註:Preprint. Code will be available at this https URL
連結:https://arxiv.org/abs/2012.09842
【5】 Taming Transformers for High-Resolution Image Synthesis
標題:馴服Transformer實現高解析度圖像合成
作者:Patrick Esser,Robin Rombach,Björn Ommer
機構:Heidelberg Collaboratory for Image Processing, IWR, Heidelberg University, Germany, Both authors contributed equally to this work
連結:https://arxiv.org/abs/2012.09841
【6】 Transformer Interpretability Beyond Attention Visualization
標題:超越注意力可視化的Transformer可解釋性
作者:Hila Chefer,Shir Gur,Lior Wolf
機構:Tel Aviv University, Facebook AI Research(FAIR)
連結:https://arxiv.org/abs/2012.09838
【7】 SceneFormer: Indoor Scene Generation with Transformers
標題:SceneFormer:使用Transformer生成室內場景
作者:Xinpeng Wang,Chandan Yeshwanth,Matthias Nießner
機構:Technical University of Munich
連結:https://arxiv.org/abs/2012.09793
【8】 Interpretable Image Clustering via Diffeomorphism-Aware K-Means
作者:Romain Cosentino,Randall Balestriero,Yanis Bahroun,Anirvan Sengupta,Richard Baraniuk,Behnaam Aazhang
機構:Rice University, Flatiron Institute Rutgers University
連結:https://arxiv.org/abs/2012.09743
【9】 A fully pipelined FPGA accelerator for scale invariant feature transform keypoint descriptor matching,
標題:一種用於尺度不變特徵變換關鍵點描述符匹配的全流水線FPGA加速器,
作者:Luka Daoud,Muhammad Kamran Latif,H S. Jacinto,Nader Rafla
機構:Boise State University, Boise, ID , USA
備註:None
連結:https://arxiv.org/abs/2012.09666
【10】 Learning to Share: A Multitasking Genetic Programming Approach to Image Feature Learning
作者:Ying Bi,Bing Xue,Mengjie Zhang
備註:will submit to IEEE Transactions on Evolutionary Computation soon
連結:https://arxiv.org/abs/2012.09444
【11】 Multi-shot Temporal Event Localization: a Benchmark
作者:Xiaolong Liu,Yao Hu,Song Bai,Fei Ding,Xiang Bai,Philip H. S. Torr
機構:Huazhong University of Science and Technology, Alibaba Group , University of Oxford
備註:Project page at this https URL
連結:https://arxiv.org/abs/2012.09434
【12】 Computation-Efficient Knowledge Distillation via Uncertainty-Aware Mixup
作者:Guodong Xu,Ziwei Liu,Chen Change Loy
機構:he chinese University of Hong Kong ,Nanyang Technological University
備註:The code is available at: this https URL
連結:https://arxiv.org/abs/2012.09413
【13】 Temporal LiDAR Frame Prediction for Autonomous Driving
作者:David Deng,Avideh Zakhor
機構:UC Berkeley
備註:In 3DV 2020
連結:https://arxiv.org/abs/2012.09409
【14】 Zoom-to-Inpaint: Image Inpainting with High Frequency Details
標題:Zom-to-Inaint:高頻細節的圖像修復
作者:Soo Ye Kim,Kfir Aberman,Nori Kanazawa,Rahul Garg,Neal Wadhwa,Huiwen Chang,Nikhil Karnad,Munchurl Kim,Orly Liba
機構:IKAIST, Google Research, Daejeon, Republic of Korea, Mountain View CA, USA
連結:https://arxiv.org/abs/2012.09401
【15】 Event Camera Calibration of Per-pixel Biased Contrast Threshold
作者:Ziwei Wang,Yonhon Ng,Pieter van Goor,Robert Mahony
機構:Systems Theory and Robotics Group Systems Theory and Robotics Group Systems Theory and Robotics Group, Australian National University, ACT, Australia, December
備註:11 pages, 7 figures, the paper has been accepted for publication at the Australian Conference on Robotics and Automation, 2019
連結:https://arxiv.org/abs/2012.09378
【16】 Semi-Global Shape-aware Network
作者:Pengju Zhang,Yihong Wu,Jiagang Zhu
機構:University of Chinese Academy of Sciences, National Laboratory of Pattern Recognition Institute of Automation, Chinese Academy of Sciences, XForwardAI Technology Co., Ltd.
備註:8 pages, 6 figures
連結:https://arxiv.org/abs/2012.09372
【17】 Polyblur: Removing mild blur by polynomial reblurring
作者:Mauricio Delbracio,Ignacio Garcia-Dorado,Sungjoon Choi,Damien Kelly,Peyman Milanfar
機構:Google Research
連結:https://arxiv.org/abs/2012.09322
【18】 Projected Distribution Loss for Image Enhancement
作者:Mauricio Delbracio,Hossein Talebi,Peyman Milanfar
連結:https://arxiv.org/abs/2012.09289
【19】 Sparse Signal Models for Data Augmentation in Deep Learning ATR
作者:Tushar Agarwal,Nithin Sugavanam,Emre Ertin
備註:12 pages, 5 figures, to be submitted to IEEE Transactions on Geoscience and Remote Sensing
連結:https://arxiv.org/abs/2012.09284
【20】 On Episodes, Prototypical Networks, and Few-shot Learning
作者:Steinar Laenen,Luca Bertinetto
機構:www. five. ai
備註:19 pages. A preliminary version of this work appeared as an oral presentation at NeurIPS 2020 meta-learning workshop
連結:https://arxiv.org/abs/2012.09831
【21】 Describing the Structural Phenotype of the Glaucomatous Optic Nerve Head Using Artificial Intelligence
作者:Satish K. Panda,Haris Cheong,Tin A. Tun,Sripad K. Devella,Ramaswami Krishnadas,Martin L. Buist,Shamira Perera,Ching-Yu Cheng,Tin Aung,Alexandre H. Thiéry,Michaël J. A. Girard
機構:Ophthalmic Engineering Innovation Laboratory (OEIL), Singapore Eye Research Institute, National University of Singapore, Singapore, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Glaucoma Services, Aravind Eye Care Systems, Madurai, India, Duke-NUS Medical School, Singapore
連結:https://arxiv.org/abs/2012.09755
【22】 Image-Based Jet Analysis
作者:Michael Kagan
機構:SLAC National Accelerator Laboratory
備註:To appear in Artificial Intelligence for Particle Physics, World Scientific Publishing
連結:https://arxiv.org/abs/2012.09719
【23】 Joint Search of Data Augmentation Policies and Network Architectures
作者:Taiga Kashima,Yoshihiro Yamada,Shunta Saito
機構: The University of Tokyo, Preferred Networks inc., Japan
備註:under review
連結:https://arxiv.org/abs/2012.09407
【24】 Simultaneous View and Feature Selection for Collaborative Multi-Robot Recognition
作者:Brian Reily,Hao Zhang
連結:https://arxiv.org/abs/2012.09328
【25】 StarcNet: Machine Learning for Star Cluster Identification
作者:Gustavo Perez,Matteo Messa,Daniela Calzetti,Subhransu Maji,Dooseok Jung,Angela Adamo,Mattia Siressi
連結:https://arxiv.org/abs/2012.09327
【26】 Reduction in the complexity of 1D 1H-NMR spectra by the use of Frequency to Information Transformation
標題:利用頻率到信息變換降低一維1H-NMR譜的複雜度
作者:Homayoun Valafar,Faramarz Valafar
備註:21 pages
連結:https://arxiv.org/abs/2012.09267
機器翻譯,僅供參考點擊
閱讀原文訪問www.arxivdaily.com,獲取帶摘要及更多學科的學術速遞。