研究揭示整合單細胞數據集Harmony
作者:
小柯機器人發布時間:2019/11/19 12:23:39
美國布萊根婦女醫院和哈佛醫學院Soumya Raychaudhuri研究組揭示了快速、靈敏、準確地整合單細胞數據:Harmony。相關論文11月18日在線發表在《自然—方法學》上。
研究人員提供了Harmony(https://github.com/immunogenomics/harmony),一種按細胞類型而不是特定數據集進行分組的算法,其將不同細胞數據整合到一個數據集。Harmony解決了多個實驗和生物學因素。在六項分析中,研究人員證明Harmony優於以前發布的算法,同時所需的計算資源更少。利用Harmony可以在個人計算機上集成約106個單元。研究人員利用Harmony整合了具有較大實驗差異數據的外周血單核細胞聚集,這些數據集包括胰腺胰島細胞的五項研究、小鼠胚胎發生數據集以及scRNA-seq與空間轉錄組學數據集。
據介紹,多樣的單細胞RNA-seq數據集可以在多種生物學和臨床條件下對細胞的轉錄進行完整的表徵。但因為存在著生物學和技術上的差異,特別是在使用不同技術分析數據集時將它們一起分析仍是一個挑戰。
附:英文原文
Title: Fast, sensitive and accurate integration of single-cell data with Harmony
Author: Ilya Korsunsky, Nghia Millard, Jean Fan, Kamil Slowikowski, Fan Zhang, Kevin Wei, Yuriy Baglaenko, Michael Brenner, Po-ru Loh, Soumya Raychaudhuri
Issue&Volume: 2019-11-18
Abstract: The emerging diversity of single-cell RNA-seq datasets allows for the full transcriptional characterization of cell types across a wide variety of biological and clinical conditions. However, it is challenging to analyze them together, particularly when datasets are assayed with different technologies, because biological and technical differences are interspersed. We present Harmony (https://github.com/immunogenomics/harmony), an algorithm that projects cells into a shared embedding in which cells group by cell type rather than dataset-specific conditions. Harmony simultaneously accounts for multiple experimental and biological factors. In six analyses, we demonstrate the superior performance of Harmony to previously published algorithms while requiring fewer computational resources. Harmony enables the integration of ~106 cells on a personal computer. We apply Harmony to peripheral blood mononuclear cells from datasets with large experimental differences, five studies of pancreatic islet cells, mouse embryogenesis datasets and the integration of scRNA-seq with spatial transcriptomics data.
DOI: 10.1038/s41592-019-0619-0
Source: https://www.nature.com/articles/s41592-019-0619-0