射影定理,又稱「歐幾裡德定理」:在直角三角形中,斜邊上的高是兩條直角邊在斜邊射影的比例中項,每一條直角邊又是這條直角邊在斜邊上的射影和斜邊的比例中項。射影定理是數學圖形計算的重要定理。
在Rt△ABC中,∠ABC=90°,BD是斜邊AC上的高,則有射影定理如下:
BD²=AD·CD
AB²=AC·AD
BC²=CD·AC
由古希臘著名數學家、《幾何原本》作者歐幾裡得提出。
此外,當這個三角形不是直角三角形但是角ABC等於角CDB時也成立。可以使用相似進行證明,過程略。
①CD²=AD·BD;
②AC²=AD·AB;
③BC²=BD·AB;
④AC·BC=AB·CD
證明:①∵CD²+AD²=AC²,CD²+BD²=BC²
∴2CD²+AD²+BD²=AC²+BC²
∴2CD²=AB²-AD²-BD²
∴2CD²=(AD+BD)²-AD²-BD²
∴2CD²=AD²+2AD·BD+BD²-AD²-BD²
∴2CD²=2AD·BD
∴CD²=AD·BD
②∵CD²=AD·BD(已證)
∴CD²+AD²=AD·BD+AD²
∴AC²=AD·(BD+AD)
∴AC²=AD·AB
③BC²=CD²+BD²
BC²=AD·BD+BD²
BC²=(AD+BD)·BD
BC²=AB·BD
∴BC²=AB·BD
④∵S△ACB=
AC×BC=
AB·CD
∴
AC·BC=
AB·CD
∴AC·BC=AB·CD
歐幾裡得提出的面積射影定理projective theorem規
射影定理的推廣證明
定「平面圖形射影面積等於被射影圖形的面積乘以該圖形所在平面與射影面所夾角的餘弦。(即COSθ=S射影/S原)。」
(平面多邊形及其射影的面積分別是
和
,它們所在平面所成的二面角為
)
正射影二面角的歐幾裡得射影面積公式
因為射影就是將原圖形的長度(三角形中稱高)縮放,所以寬度是不變的,又因為平面多邊形的面積比=邊長的乘積比。所以就是圖形的長度(三角形中稱高)的比。
那麼這個比值應該是平面所成角的餘弦值。在兩平面中作一直角三角形,並使斜邊和一直角邊垂直於稜(即原多邊形圖的平面和射影平面的交線),則三角形的斜邊和另一直角邊就是其多邊形的長度比,即為平面多邊形的面積比。將此比值放到該平面中的三角形中去運算即可得證。