詳解電磁幹擾的原理

2020-11-23 電子發燒友

詳解電磁幹擾的原理

佚名 發表於 2016-01-28 14:01:11

  所謂的電磁幹擾,廣義來說,一切進入信道或通信系統的非有用信號,均稱之為電磁幹擾。電磁幹擾已經深入到我們日常的生活。例如,觀看電視時,附近有人使用電鑽、電吹風等電器,會使電視畫面出現雪花點,所聲器裡發出剌耳的噪聲……等等。這類現象人們早已司空見慣、習以為常了,但是電磁幹擾的危害卻遠不止如此。事實上,電磁幹擾已使民航系統失效、通信不暢、計算機運行錯誤、自控設備誤動作等,甚至危及人身安全。因此如何有效的抑制電磁幹擾成為模擬工程師必須具備和考慮的因素,在這裡為大家詳述了什麼是電磁幹擾,如何有效的抑制電磁幹擾。

  電子線路與電磁幹擾的分析

  現代的電子產品,功能越來越強大,電子線路也越來越複雜,電磁幹擾(EMI)和電磁兼容性問題變成了主要問題,電路設計對設計師的技術水平要求也越來越高。電磁幹擾一般都分為兩種,傳導幹擾和輻射幹擾。傳導幹擾是指通過導電介質把一個電網絡上的信號耦合(幹擾)到另一個電網絡。輻射幹擾是指幹擾源通過空間把其信號耦合(幹擾)到另一個電網絡。因此對EMC問題的研究就是對幹擾源、耦合途徑、敏感設備三者之間關係的研究。

  美國聯邦通訊委員會在1990年、歐盟在1992提出了對商業數碼產品的有關規章,這些規章要求各個公司確保他們的產品符合嚴格的磁化係數和發射準則。符合這些規章的產品稱為具有電磁兼容性。

  目前全球各地區基本都設置了EMC相應的市場準入認證,用以保護本地區的電磁環境和本土產品的競爭優勢。如:北美的FCC、NEBC認證、歐盟的CE認證、日本的VCCEI認證、澳洲的C-tick人證、臺灣地區的BSMI認證、中國的3C認證等都是進入這些市場的「通行證」。

  電磁感應與電磁幹擾

  很多人從事電子線路設計的時候,都是從認識電子元器件開始,但從事電磁兼容設計實際上應從電磁場理論開始,即從電磁感應認識開始。

  一般電子線路都是由電阻器、電容器、電感器、變壓器、有源器件和導線組成,當電路中有電壓存在的時候,在所有帶電的元器件周圍都會產生電場,當電路中有電流流過的時候,在所有載流體的周圍都存在磁場。

  電容器是電場最集中的元件,流過電容器的電流是位移電流,這個位移電流是由於電容器的兩個極板帶電,並在兩個極板之間產生電場,通過電場感應,兩個極板會產生充放電,形成位移電流。實際上電容器迴路中的電流並沒有真正流過電容器,而只是對電容器進行充放電。當電容器的兩個極板張開時,可以把兩個極板看成是一組電場輻射天線,此時在兩個極板之間的電路都會對極板之間的電場產生感應。在兩極板之間的電路不管是閉合迴路,或者是開路,在與電場方向一致的導體中都會產生位移電流(當電場的方向不斷改變時),即電流一會兒向前跑,一會兒向後跑。

  電場強度的定義是電位梯度,即兩點之間的電位差與距離之比。一根數米長的導線,當其流過數安培的電流時,其兩端電壓最多也只有零點幾伏,即幾十毫伏/米的電場強度,就可以在導體內產生數安培的電流,可見電場作用效力之大,其幹擾能力之強。

  

  電感器和變壓器是磁場最集中的元件,流過變壓器次級線圈的電流是感應電流,這個感應電流是因為變壓器初級線圈中有電流流過時,產生磁感應而產生的。在電感器和變壓器周邊的電路,都可看成是一個變壓器的感應線圈,當電感器和變壓器漏感產生的磁力線穿過某個電路時,此電路作為變壓器的「次級線圈」就會產生感應電流。兩個相鄰迴路的電路,也同樣可以把其中的一個迴路看成是變壓器的「初級線圈」,而另一個迴路可以看成是變壓器的「次級線圈」,因此兩個相鄰迴路同樣產生電磁感應,即互相產生幹擾。

  在電子線路中只要有電場或磁場存在,就會產生電磁幹擾。在高速PCB及系統設計中,高頻信號線、集成電路的引腳、各類接插件等都可能成為具有天線特性的輻射幹擾源,能發射電磁波並影響其它系統或本系統內其他子系統的正常工作。

  電磁幹擾的分類

  具體到「電磁幹擾」,可以按照下面所列七類進行劃分:

  按照發生源劃分

  按照傳播路徑劃分

  按照輻射幹擾的產生原因劃分

  按照不同設備的工作原理劃分

  按照發生的頻率劃分

  按照頻率範圍劃分

  不同的交流電源

  而且可以在每一類中進一步分類。根據發生源可將幹擾細分如圖1~圖4。

  

  圖1 電磁幹擾源類別

  

  圖2自然幹擾源類別

  

  圖3人為幹擾源類別

  

  圖4 內部幹擾源類別

  從受幹擾方面來看,外來噪聲是外界幹擾,內部噪聲是機內噪聲。

  除此之外,噪聲按傳遞途徑分類如圖5所示。

  

  圖5 按照幹擾傳輸路徑分類

  幹擾傳播的途徑如圖6所示。有通過電源線、信號線、地線、大地等途徑傳播的「傳導幹擾」,也有通過空間直接傳播的「空間幹擾」。

  這些噪聲並不獨立存在,在傳播過程中又會出現新的複雜噪聲。

  

  圖6 幹擾傳播路徑

  造成數字電路工作不正常的幹擾可分為:①電源幹擾,②反射,③振鈴(LC共振):上衝、下衝,④狀態翻轉幹擾,⑤串擾幹擾(相互幹擾、串音),⑥直流電壓跌落。

  造成開關電源質量下降的幹擾分為:①出現在輸出入端子上的幹擾(電流交流聲,尖峰脈衝噪聲,回流噪聲);②影響內部工作的幹擾(開關幹擾,振蕩,再生噪聲)。

  按發生的頻率分為:突發乾擾,脈衝幹擾,周期性幹擾,瞬時幹擾,隨機幹擾,跳動幹擾。

  造成交流電源質量下降的幹擾分為:高次諧波幹擾,保護繼電器,開關的震顫幹擾,雷電湧,尖峰脈衝幹擾,噴射環電弧,瞬時浪湧。

  將來可能會將下面這些項目歸入到交流幹擾內:瞬時停電,瞬時下降,頻率變化,電壓變化,高次諧波失真。

  另外還幹擾按頻率分為:低頻幹擾,高頻幹擾。

  如上所述,幹擾可以分成很多類別,這些幹擾既產生於電氣電子設備,又幹擾電氣電子設備,造成設備的故障和停用,帶來經濟和人員傷害。為了使各種設備能夠互不幹擾,正常工作,應運而生了EMC技術。

  簡而言之,EMC是「不發乾擾,不受幹擾」。現在國內外都在研究開發EMC技術,並應用於電氣電子設備的製造中。

  什麼是共模幹擾和差模幹擾?為什麼有二種?

  從幹擾源發出的幹擾洩漏到外部的途徑、或者是幹擾侵入到受幹擾的設備中的途徑,有電壓、電流通過電源線或信號線的傳導傳輸和靠電磁波在空間輻射傳輸二種途徑。

  電壓電流的變化通過導線傳輸時有二種形態,我們將此稱做「共模」和「差模」。設備的電源線、電話等的通信線、與其它設備或外圍設備相互交換的通訊線路,至少有兩根導線,這兩根導線作為往返線路輸送電力或信號。但在這兩根導線之外通常還有第三導體,這就是「地線」。幹擾電壓和電流分為兩種:一種是兩根導線分別做為往返線路傳輸;另一種是兩根導線做去路,地線做返迴路傳輸。前者叫「差模」,後者叫「共模」。

  如圖7所示,電源、信號源及其負載通過兩根導線連接。流過一邊導線的電流與另一邊導線的電流幅度相同,方向相反。但是幹擾源並不一定連接在兩根導線之間。由於噪聲源有各種形態,所以也有在兩根導線與地線之間的電壓。其結果是流過兩根導線的幹擾電流幅度不同。

  

  圖7 差模幹擾

  請看圖8,在加在兩線之間的幹擾電壓的驅動下,兩根導線上有幅度相同但方向相反的電流(差模電流)。但如果同時在兩根導線與地線之間加上幹擾電壓,兩根線就會流過幅度和方向都相同的電流,這些電流(共模)合在一起經地線流向相反方向。我們來考察流過兩根導線的電流。一根導線上的差模幹擾電流與共模幹擾同向,因此相加;另一根導線上的差模噪聲與共模噪聲反向,因此相減。因此,流經兩根導線的電流具有不同的幅度。

  我們再來考慮一下對地線的電壓。如圖8,對於差模電壓,一根導線上是(線間電壓)/2,而另一根導線上是 -(線間電壓)/2,因而是平衡的。但共模電壓兩根導線上相同。所以當兩種模式同時存在時,兩根導線對地線的電壓也不同。

  

  圖8 對地電壓/電流與差模、共模電壓/電流之間的關係

  因此,當兩根導線對地線電壓或電流不同時,可通過下列方法求出兩種模式的成分:

  VN =(V1-V2)/ 2 Vc=(V1+V2)/ 2

  IN =(I1-I2)/ 2 Ic=(I1+I2)/ 2

  通過被連接的電路,兩根導線終端與地線之間存在著阻抗。這兩條線的阻抗一旦不平衡,在終端就會出現模式的相互轉換。即通過導線傳遞的一種模式在終端反射時,其中一部分會變換成另一種模式。

  另外,通常兩根導線之間的間隔較小,導線與地線導體之間距離較大。所以若考慮從導線輻射的幹擾,與差模電流產生的輻射相比,共模電流輻射的強度更大。

  與此相反,可以說因外部電磁場幹擾在導線上產生的幹擾電壓/電流,或附近的導線等產生的靜電感應、電磁感應等的耦合是一樣的。

  傳導噪聲與輻射噪聲的區別是什麼?

  當我們開空調時,室內的螢光燈會出現瞬間變暗的現象,這是因為大量電流流向空調,電壓急速下降,利用同一電源的螢光燈受到影響。還有使用吸塵器時收音機會出現啪啦啪啦的雜音。原因是吸塵器的馬達產生的微弱(低強度高頻的)電壓/電流變化通過電源線傳遞進入收音機,以雜音的形式放了出來。

  這種由一個設備中產生的電壓/電流通過電源線、信號線傳導並影響其它設備時,將這個電壓/電流的變化叫做「傳導幹擾」。所以為對症下藥,通常採用的方法是給發生源及被幹擾設備的電源線等安裝濾波器,阻止傳導幹擾的傳輸。另外,噹噹信號線上出現噪聲時,將信號線改為光纖,也可隔斷傳輸途徑。

  當摩託車從附近道路通過時,電視會出現雪花狀幹擾。這是因為摩託車點火裝置的脈衝電流產生了電磁波,傳到空間再傳給附近的電視天線、電路上,產生了幹擾電壓/電流。

  象這種通過空間傳播,並對其它設備電路產生無用電壓/電流,造成危害的幹擾稱為「輻射幹擾」。由於傳播途徑是空間,解決輻射幹擾的方法除前面所講的濾波之外,還要對設備進行屏蔽方能有效。

  如上所述,幹擾的根源是電壓/電流產生不必要的變化,這種變化通過導線直接傳遞給其它設備,造成危害,這叫「傳導幹擾」。另外,由於電壓電流變化而產生的電磁波通過空間傳播到其它設備中,在電路或導線上產生不必要的電壓/電流,並造成危害的幹擾叫「輻射幹擾」。但是,實際上並不能這樣簡單區分。

打開APP閱讀更多精彩內容

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容圖片侵權或者其他問題,請聯繫本站作侵刪。 侵權投訴

相關焦點

  • 電磁幹擾原理
    電磁幹擾是變頻器驅動系統中的一個主要問題。2.電磁幹擾原理--類型  電磁幹擾可以分為傳導幹擾和輻射幹擾兩種。3.電磁幹擾原理  電磁指的是物質所表現出來的電性以及磁性的統稱,例如電磁感應、電磁波等等。
  • 電磁幹擾介紹及電磁兼容設計原理及測試方法
    摘要:針對當前嚴峻的電磁環境,分析了電磁幹擾的來源,通過產品開發流程的分解,融入電磁兼容設計,從原理圖設計、PCB設計、元器件選型、系統布線、系統接地等方面逐步分析,總結概括電磁兼容設計要點,最後,介紹了電磁兼容測試的相關內容。
  • 電磁幹擾濾波電容器詳解
    但是,隨著電磁幹擾問題的日益突出,特別是幹擾頻率的日益提高,由於不了解電容的基本特性而達不到預期濾波效果的事情時有發生。 電磁幹擾濾波器,又名「EMI濾波器」是一種用於抑制電磁幹擾,特別是電源線路或控制信號線路中噪音的電子線路設備。 電磁幹擾濾波器的功能就是保持電子設備的內部產生的噪聲不向外洩漏,同時防止電子設備外部的交流線路產生的噪聲進入設備。
  • 三種電磁屏蔽的目的及原理詳解
    電磁屏蔽一般可分為三種:靜電屏蔽、靜磁屏蔽和高頻電磁場屏蔽。三種屏蔽的目的都是防止外界的電磁場進入到某個需要保護的區域中,原理都是利用屏蔽對外場的感應產生的效應來抵消外場的影響。但是由於所要屏蔽的場的特性不同,因而對屏蔽殼材料的要求和屏蔽效果也就不相同。
  • 電磁感應的傳導幹擾和輻射幹擾
    開關電源變壓器在電磁轉換過程中,工作效率不可能100%,因此,也會有一部分能量損失,其中的一部分能量損失就是因為產生漏磁,或漏磁通。這些漏磁通穿過其它電路的時候,也會產生感應電動勢。感應電動勢的大小可由(13)、(14)或(16)式求得。
  • 電磁幹擾測量和判斷幹擾發生源的方法
    當你的產品由於電磁幹擾發射強度超過電磁兼容標準規定而不能出廠時,或當由於電路模塊之間的電磁幹擾,系統不能正常工作時,我們就要解決電磁幹擾的問題。要解決電磁幹擾問題,首先要能夠「看」到電磁幹擾,了解電磁幹擾的幅度和發生源。本文要介紹有關電磁幹擾測量和判斷幹擾發生源的的方法。
  • EMI電磁幹擾中耦合機理與電場幹擾解釋
    電磁幹擾EMI是電子電路設計者設計生涯中最頭疼的問題之一,只要電路運行,就必然有電磁幹擾的產生。本文就將對EMI產生機理中的耦合機理與電場幹擾來進行解釋。
  • 電磁傳感器檢測信號幹擾的電磁信號檢測方案
    電磁傳感器檢測信號幹擾的電磁信號檢測方案 卓晴 發表於 2020-12-28 14:50:39 看到有同學問:為什麼電磁車模,在開啟電機之後,採集的電磁強度數值出現異常的問題。
  • 電磁兼容測量及電磁幹擾三要素
    這個定義的前一半體現的是設備的電磁幹擾(EMI) 特性,即不對其他設備產生電磁幹擾,不對環境構成電磁汙染;後一半體現的是設備的電磁敏感(EMS) 特性, 即不受其他設備的電磁幹擾,不對電磁環境產生敏感反應。 符合電磁兼容的不同電子設備可以在一起正常工作,它們是相互兼容的, 否則就是不兼容的。
  • 開關電源電磁幹擾的產生機理與抑制技術
    由於開關電源工作在高頻開關狀態,內部會產生很高的電流、電壓變化率,導致開關電源產生較強的電磁幹擾。電磁幹擾信號不僅對電網造成汙染,還直接影響到其他用電設備甚至電源本身的正常工作,而且作為輻射幹擾闖入空間,造成電磁汙染,制約著人們的生產和生活。國內在20世紀80一90年代,為了加強對當前國內電磁汙染的治理,制定了一些與CISPR標準、IEC801等國際標準相對應的標準。
  • 如何解決傳導電磁幹擾噪聲?我有招
    打開APP 如何解決傳導電磁幹擾噪聲?我有招 發表於 2016-11-30 15:04:11 使用電磁幹擾濾波電路是為了使最終產品滿足適用的電磁兼容性標準。
  • 「電磁屏蔽罩」單憑一個金屬罩就能屏蔽電磁幹擾?
    電磁屏蔽罩的作用是屏蔽外界電磁波對內部電路的影響和內部產生的電磁波向外輻射。下面 力達精工帶大家來了解一下電磁屏蔽罩:在電子設備中,為了防止外界電磁場的幹擾,常在示波管、顯像管中電子束聚焦部分的外部加上鐵磁性材料製成一個罩子,把需要 防幹擾的部件罩在裡面,使它和外界電磁場隔離,也可以把輻射 幹擾的部件罩起來,使它不能干擾別的部件,這個罩子 稱為 電磁屏蔽罩。
  • EDA365:PCB 電磁幹擾原理
    電子產品單板PCB 對外產生的幹擾既可能是差模幹擾,也可能是共模幹擾。產生幹擾的原因是單板PCB 上存在著對應的共模(CM)幹擾電流和差摸(DM)幹擾電流。單板上產生的幹擾以傳導或輻射的方式對外形成發射,從而導致產品EMC 問題。共模幹擾電流與差模幹擾電流如下面兩個圖所示。
  • 電路分析:電磁幹擾濾波器原理圖
    以下為一款電磁幹擾濾波器的原理電路,該五端器件有兩個輸入端、兩個輸出端和一個接地端,使用時外殼應接通大地。電路中包括共模扼流圈(亦稱共模電感)L、濾波電容C1~C4.L對串模幹擾不起作用,但當出現共模幹擾時,由於兩個線圈的磁通方向相同,經過耦合後總電感量迅速增大,因此對共模信號呈現很大的感抗,使之不易通過,故稱作共模扼流圈。
  • 電磁幹擾在電磁波頻譜中的劃分介紹
    二、電磁幹擾的頻譜分布 信息化社會的電磁環境異常複雜,而且愈來愈複雜。電磁幹擾分布在整個電磁波頻譜。如果按最常見的幹擾的頻譜來劃分,則可粗略分為以下幾個頻段: 1. 工頻幹擾:頻率50~60Hz左右,主要是輸、配電系統以及電力牽引系統所產生的電磁場輻射; 2. 甚低頻幹擾:30KHz以下的幹擾輻射、雷電、核爆炸以及地震所產生的電磁脈衝,其能量主要分布在這一頻段; 3. 長波信號幹擾:頻率範圍10KHz~300KHz。
  • 【科普】三種電磁屏蔽的目的及原理詳解
    電磁屏蔽一般可分為三種:靜電屏蔽、靜磁屏蔽和高頻電磁場屏蔽。三種屏蔽的目的都是防止外界的電磁場進入到某個需要保護的區域中,原理都是利用屏蔽對外場的感應產生的效應來抵消外場的影響。但是由於所要屏蔽的場的特性不同,因而對屏蔽殼材料的要求和屏蔽效果也就不相同。
  • 電磁流量計工作原理作用
    電磁流量計工作原理作用,智能電磁流量計結構示意圖電磁流量計(Eletromagnetic Flowmeters,簡稱EMF)是20世紀50~60年代隨著電子技術的發展而迅速發展起來的新型流量測量儀表。電磁流量計是根據法拉第電磁感應定律製成的,用來測量導電液體體積流量的儀表。
  • 「知識課堂」排除電磁流量計幹擾的方法
    電磁流量計測量原理為基於法拉第電磁感應定律。流量計的測量管是一內襯絕緣材料的非導磁合金短管。兩隻電極沿管徑方向穿通管壁固定在測量管上。線圈勵磁時,將在與測量管軸線垂直的方向上產生一磁通量密度為B的工作磁場。1:靜電和電磁波幹擾。靜電和電磁波會通過電磁流量計傳感器和轉換器間的信號線引入,通常若良好屏蔽(如信號線用屏蔽電纜,電纜置於保護鐵管內)是可以防治的。
  • 電磁幹擾很嚴重,如何提高CAN總線電磁兼容性
    但是,工業現場環境惡劣,電磁幹擾較為嚴重,如何保證CAN總線通訊的可靠性尤為重要。本文著重介紹CAN總線電磁兼容性能,提出幾種改善CAN總線電磁兼容性能的措施。國際上已經開始對電子產品的電磁兼容性做強制性限制,電磁兼容性能已經成為考核產品性能的重要指標之一,因此必須予以重視。電磁兼容主要包括兩方面的內容,一個是產品本身對外界產生不良的電磁幹擾EMI影響,稱為電磁幹擾發射;另一個是對外界電磁信號的敏感程度,稱為電磁敏感度EMS。幹擾源、耦合途徑及敏感設備是電磁兼容的三要素,缺一不可。電磁幹擾信號的耦合途徑有傳導和輻射兩種。
  • 共模電感如何濾除共模電磁幹擾信號,如何理解它的工作原理
    一、什麼是共模電感共模電感有時候也叫共模扼流圈,它是一種用於濾除共模幹擾信號的EMC常用元器件之一。二、共模電感工作原理如下圖,這是共模電感的結構示意圖,它由兩個線圈同時繞在一個鐵氧體上,這兩個線圈匝數相同但是繞制方向相反,當線圈中流過幹擾信號(差模信號)時,兩個相反方向的磁場E1和E2會抵消;但是對於共模信號通過時,磁環中的磁通發生相互疊加,這就相當於有比較大的電感量,線圈呈現出高阻抗特性,