探討功率因數校正技術PFC中的電感材料選擇

2021-01-20 電子產品世界

  開關電源(硬開關方式)如今已經實用化、商品化,其突出的優點效率高,體積小,重量輕已被人們認可。但是負面效應決不可忽視,由於不可控整流方式網側輸入電流為非正弦周期電流,AC/DC變換器在投入運行時,將向電網注入大量的高次諧波。因此網側的功率因數不高,僅有0.6左右,並對電網和其它電氣設備造成嚴重諧波汙染與幹擾。在三相四線制供電方式中,由於多次諧波分量疊加,使中線電流增大,這是一個很棘手的問題。而如今計算機電源、UPS、程控交換機電源、電焊機電源、電子鎮流器等早已高頻開關化,其對電網的汙染已達到必須治理的程度,因此功率因數校正技術正在成為熱點,並將成為商家進入市場的關鍵。

本文引用地址:http://www.eepw.com.cn/article/228053.htm

  從電工學原理講,功率因數PF是指交流輸入有功功率P與視在功率S的比值。

  PF=P/S=UI1cosφ/UI2=DFcosφ(1)

  式中:I1-基波電流有效值;

  I2-電網電流有效值;

  U-電網電壓有效值;

  φ-基波電流、電壓的相位差;

  DF(distortionfactor)為電流失真因子。

  要使PF→1,必須對輸入電流嚴重非正弦情況採取相應的措施,使DF→1,同時還必須使基波電流與電壓相位差φ→0,才能使PF→1,所以功率因數校正實際上是對輸入電流整形使其儘可能正弦化,同時改善電源系統的輸入阻抗,使之儘量呈電阻性,使基波電流與電壓同相位。這就是功率因數校正的基本思路。

  開關電源的功率因數校正器(PFC)可分為兩類,一類為有源PFC,由電感電容及電子元器件組成;另一類為無源PFC,一般採用電感補償方法使交流輸入的基波電流與電壓之間相位差減小來提高功率因數。在校正電路中有源PFC較多採用高頻升壓電路功率因數開關調節器,通常採用Boost電路,基本電路拓樸見圖1.

  

  圖1 升壓型Boost電路圖

  圖中Li為儲能電感,看起來並不複雜的電路,但是如何能夠合理選擇元件及相關元件的材料是關鍵所在,本文將就PFC技術中的電感元件及材料開展討論。

  PFC的英文全稱為「Power Factor Correction」,意思是「功率因數校正」,功率因數指的是有效功率與總耗電量(視在功率)之間的關係,也就是有效功率除以總耗電量(視在功率)的比值。基本上功率因素可以衡量電力被有效利用的程度,當功率因素值越大,代表其電力利用率越高。

  計算機開關電源是一種電容輸入型電路,其電流和電壓之間的相位差會造成交換功率的損失,此時便需要PFC電路提高功率因數。目前的PFC有兩種,一種為被動式PFC(也稱無源PFC)和主動式PFC(也稱有源式PFC)

  被動式PFC一般分「電感補償式」和「填谷電路式(Valley Fill Circuit)」 「電感補償方法」是使交流輸入的基波電流與電壓之間相位差減小來提高功率因數,被動式PFC包括靜音式被動PFC和非靜音式被動PFC.被動式PFC的功率因數只能達到0.7~0.8,它一般在高壓濾波電容附近。 「填谷電路式」屬於一種新型無源功率因數校正電路,其特點是利用整流橋後面的填谷電路來大幅度增加整流管的導通角,通過填平谷點,使輸入電流從尖峰脈衝變為接近於正弦波的波形,將功率因數提高到0.9左右,顯著降低總諧波失真。與傳統的電感式無源功率因數校正電路相比,其優點是電路簡單,功率因數補償效果顯著,並且在輸入電路中不需要使用體積大重量沉的大電感器。

  而主動式PFC則由電感電容及電子元器件組成,體積小、通過專用IC去調整電流的波形,對電流電壓間的相位差進行補償。主動式PFC可以達到較高的功率因數──通常可達98%以上,但成本也相對較高。此外,主動式PFC還可用作輔助電源,因此在使用主動式PFC電路中,往往不需要待機變壓器,而且主動式PFC輸出直流電壓 的紋波很小,這種電源不必採用很大容量的濾波電容。現在我們先來探討無源PFC中的電感材料選擇

  1 、無源PFC中的電感材料選擇

  無源PFC是一個由電感、電容組成的低通濾波器,如圖2所示是一種低通濾波器的電路原理圖,其中L1是共模電感,L2,L3是差模電感。

  共模電感是完全對稱、線圈匝數相同的兩個電感線圈,繞在同一個鐵心上,電流同方向流經兩組線圈後,根據右手螺旋法則,在電感鐵心內產生兩個方向相反的磁場,由於流經電流大小,線圈匝數完全相同,磁場強度強弱相當,因而完全抵消,不存在磁飽和問題,主要是要考慮電感鐵心材料的初始磁導率靜,對於這類材料的靜越高越好,通常有高靜系列的鐵氧體磁心,靜=4等類型,鐵基超微晶材料靜≥5×104,坡莫合金系列如1J79,1J851系列,靜≥5×104.在選擇金屬磁性材料時必須注意頻響問題(見圖2)1J79或1J851系列的磁心靜隨頻率上升而下降的幅度比較大,越薄的材料,靜隨頻率下降的幅度比較小,設計時應注意這一點。

  

  圖2 低通濾波器電路原理圖

  差模電感 主要要解決磁飽和問題,在實際使用過程中,廣大電路工作者已經逐步認識到了磁粉心的優越性,使用鐵心加氣隙的作法(鐵氧體磁心加氣隙,非晶磁心加氣隙,矽鋼磁心加氣隙)已越來越少。現在用於濾波器中差模電感鐵心大多為有效磁導率為60~75的磁粉心,B500=1.34T,即在39788.5A/m(即500Oe)的磁場強度下,磁感應強度達1.34T.

  

  圖3 磁芯u0隨頻率f的變化關係

  圖3是有效磁導率為75的鐵粉心的靜態磁滯回線,和鐵氧體材料相比,有高的Bs值,不易飽和,因此體積至少可減小一半,採用廉價的鐵粉作原料,並且不需要開口,沒有噪聲,成本可大大降低,價格可以和鐵氧體比擬,以27×14×11的規格為例,它可以承受400安匝而不飽和,優點突出。

  

  圖4 靍=75鐵粉心得B-H曲線

  但是值得商榷的是,可選擇作為濾波器的差模電感的磁粉心不僅僅是靍=75鐵粉心一種,圖5是鐵粉心系列靍=75,靍=55,靍=35磁導率隨頻率變化的曲線,可見它們磁導率隨頻率上升而下降的趨勢不同。圖6是MICROMETARS公司-8(靍=35)和上海鋼研精密合金器材研究所SF-33(靍=37.5)鐵粉心材料的插入損耗曲線,可見吸收峰出現在不同的頻率範圍內,因此除了考慮電感量大小,磁飽和問題,價格等因素外,還應該考慮抑制噪聲的頻率範圍,來選擇不同型號的鐵粉心。

  

  圖5 有效磁導率與頻率的關係曲線

  

  圖6 兩種鐵粉心的插入損耗曲線

  2 有源PFC中的電感材料選擇

  在功率放大的功率因數校正中基本上是採用升壓式變換電路,而升壓電感是串在輸入迴路中,電感電流等於輸入電流,只要控制電感電流就可以達到控制輸入電流。功率開關器件的切換速率鵖遠大於工頻鵲(鵖=K鵲,K 1);L值大得足以使電感中的電流連續,當功率器件開關切換脈衝佔空比的變化遵循正弦規律時,即所謂正弦波脈寬調製(SPWM)時電感中流過的電流為:

  

  當K=1時,

  iL=Ipsin鵲t(3)

  即iL與輸入電壓一樣,都是正弦波,相位又相同,從而實現了DF=1,cos達到功率 http://bbs.dianyuan.com/tech/adapter>因數校正的目的。從圖7中可見,S的控制信號實際上受控於輸入電壓,開通時由全波整流電路為L充電,關斷後L上的電壓與輸入電壓疊加為電容C和負載提供能量,因此PFC中的電感是一個儲能電感而且電感量又必須足夠的大,在50Hz基波電流上又疊加了高頻成份,對於該電感鐵心材料提出了相當高的要求,即在強的基波電流作用下不飽和又在高頻下有低的損耗。

  圖7 基本升壓型有源功率因數校正電路

  目前扼流圈鐵心使用的材料主要有兩類,一類是功率鐵氧體磁心加開氣隙,另一類是磁粉心。表1是它們的飽和磁感應強度(Bs)的比較,其中錳鋅軟磁鐵氧體Bs值最低,為0.5T,約為鐵粉心的一半左右,因此在同樣安匝數下和鐵粉心相比截面將增加1倍左右,因而體積勢必增大。

  表1不同材料的Bs值比較

  另外由於加開氣隙,在鐵氧體開氣隙處表面,形成表面渦流,造成鐵氧體磁心局部升溫,使鐵氧體磁心發熱,當溫度超過鐵氧體居裡點時,有效磁導率靍急劇下降為0,這也是功率鐵氧體磁心用作電感不利的一面,許多電源工作者對鐵氧體磁心在有源PFC線路中用作儲能電感鐵心持否定態度,可能主要就是這個原因吧。

  關於磁粉心在PFC電感 中的應用,已被很多電源工作者所認可。目前磁粉心材料大致有鐵粉心,Sendust粉心(FeSiAl),坡莫合金粉心(P.P.M),從損耗曲線上可以看出,P.P.M(靍=60)及Sendust(靍=60)和鐵粉心(靍=35)相比,前二者約為後者的1/10~1/6,因此,鐵粉心可以排除,無法用作PFC電感材料,除非大大增加體積,降低工作B值。

  國外文獻對於PFC電感材料一般都介紹坡莫合金系列,筆者以為,2Mo80NiFe磁粉系列(靍=160,147,125,60等)有優良的性能,其頻率特性、電流特性,損耗特性均為目前最高水平,而且系列化,有可選擇餘地,但是價格比較昂貴,在電源價格競爭激烈的今天,很多使用者無法接受,我們向廣大電源工作者推薦比較廉價的FeSiAl粉心。

  圖8 FeSiAl系列靍-f曲線

  圖9 FeSiAl粉心曲線

  圖10 損耗曲線(f=20kHz)

  FeSiAl 材料很早就被發現有優良的磁性能(可以和坡莫合金相比擬),高熘擔o=8),低損耗,Bs=1.1T,但由於其脆性,加工困難,而沒有大量使用。我所經過幾年的研製開發,形成了系列的FeSiAl磁粉心產品,靍=90目前進一步推向市場,圖7,8 是它們的靍-f曲線和電流特性曲線,可以和2Mo80NiFe相比擬,從圖10中所介紹的損耗曲線中可以發現,它的損耗高於坡莫合金磁粉心,但遠低於鐵粉心,可用在PFC中作電感材料。

  3 結論

  功率因數校正技術將得到越來越廣泛的應用,廣大電源工作者希望找到合適的材料來滿足電路的要求。文中介紹了鐵粉心在PFC中的應用,提出了抑制噪聲頻段不同,在差模中應用可選擇不同磁導率鐵粉心的觀點。根據有源PFC電感的特點,指出使用磁粉心作為有源PFC電感鐵心優於使用功率鐵氧體開氣隙磁心,並介紹了FeSiAl材料的系列磁粉心,旨在增加廣大電源工作者選擇餘地,製造出體積更小、溫升更低、價格更廉的功率因數校正器。

相關焦點

  • 三相功率因數校正(PFC)技術的綜述(1)
    摘要:綜述了三相功率因數校正電路發展現狀,並對典型拓撲進行分析比較。 關鍵詞:三相整流器;諧波;功率因數校正   1 引言 近20年來電力電子技術得到了飛速的發展,已廣泛應用到電力、冶金、化工、煤炭、通訊、家電等領域。
  • 一文搞懂PFC(功率因數校正)
    用電容器並連在感性負載,利用其電容上電流超前電壓的特性用以補償電感上電流滯後電壓的特性來使總的特性接近於阻性,從而改善效率低下的方法叫功率因數補償(交流電的功率因數可以用電源電壓與負載電流兩者相位角的餘弦函數值cosφ表示)。
  • 單級功率因數校正(PFC)變換器的設計
    為了使得DC/DC級工作在連續導電模式下,則有 >(1-D) (4) 式中:L2為DC/DC級的儲能電感值。 在本文中,要求Ts=8.33μs,D=0.2,Uo=16V,RL=2.133Ω,UC1=380V。
  • 詳解PFC電感的計算
    臨界連續Boost電感設計  通常Boost功率電路的PFC有三種工作模式:連續、臨界連續和斷續模式。本文介紹Boost功率電路的PFC連續工作模式的基本關係及臨界連續Boost電感設計。  連續模式的基本關係  1.
  • 一種新穎的無源功率因數校正電路
    關鍵詞:無源功率因數校正;功率因數;總諧波畸變  1 引言 隨著電力電子技術的不斷發展,越來越多的開關電源裝置被廣泛應用於各種不同的領域,使得開關電源對電網的影響,如諧波汙染及輸入端功率因數下降等問題顯得日益突出。為減少裝置對電網的諧波汙染和電磁幹擾,提出了相應的諧波抑制方法和功率因數校正電路。
  • 電源沒有pfc會有什麼後果? 淺論pfc對電源的重要性
    pfc   PFC的英文全稱為「Power Factor Correction」,意思是「功率因數校正」,功率因數指的是有效功率與總耗電量(視在功率)之間的關係,也就是有效功率除以總耗電量(視在功率)的比值。 基本上功率因數可以衡量電力被有效利用的程度,當功率因數值越大,代表其電力利用率越高。功率因數是用來衡量用電設備用電效率的參數,低功率因數代表低電力效能。
  • 電子產品對交流電網會產生汙染嗎,功率因數校正技術有哪些
    l 什麼是功率因數校正在電路中,存在感性或者容性負載時,會造成電路的電流和電壓之間產生不同步,造成相位差,會在電路中產生無效的功率(無功功率),而實際有效的功率(有功功率P)會減小。有功功率才是有用的功率,所以我們必須減小無功功率。有功功率和無功功率之和等於視在功率S。
  • 詳解PFC(功率因素校正)及主被動PFC分析對比
    穩定電流  低功率因數即代表低的電力效能,越低的功率因數值代表越高比例的電力在配送網絡中耗損,若較低的功率因數沒有被校正提升,電力公司除了有效功率外,還要提供與工作非相關的虛功,這導致需要更大的發電機、轉換機、輸送工具、纜線及額外的配送系統等事實上可被省略的設施,以彌補損耗的不足。
  • 液晶電視電源pfc電路_液晶pfc電路維修技巧
    現在進行液晶電視機和等離子電視機電路分析時、故障維修時,都經常的提到「PFC電路」一詞,這在早期的電視機中是沒有的,早期維修電視機的師傅從來沒有接觸過的,但是PFC電路是目前液晶電視機和等離子電視機中不可缺少的電路。那麼PFC到底是什麼?是一項新技術?還是新電路?
  • 開關電源功率因素校正(PFC)及其工作原理
    因此,隨著減小諧波標準的廣泛應用,更多的電源設計需要結合功率因數校正(PFC)功能 [1]~[4]。  2 高次諧波和功率因數校正的關係  一般開關電源輸入市電經整流後對電容充電,其輸入電流波形為不連續的脈衝。這種電流除了基波分量外,還含有大量的諧波。其有效值I為:  式(1)中:I1,I2,…,In分別表示輸入電流的基波分量與各次諧波分量。
  • 功率因數校正原理及相關IC
    近年來,隨著電子技術的發展,對各種辦公自動化設備,家用電器,計算機的需求逐年增加。這些設備的內部,都需要一個將市電轉換為直流的電源部分。在這個轉換過程中,會產生大量的諧波電流,使電力系統遭受汙染。作為限制標準,IEC發布了IEC1000?3?
  • 淺析有源功率因數校正技術及發展趨勢
    近幾年來,為了符合國際電工委員會61000-3-2的諧波準則,功率因數校正電路正越來越引起人們的注意。功率因數校正技術從早期的無源電路發展到現在的有源電路;從傳統的線性控制方法發展到非線性控制方法,新的拓撲和技術不斷湧現。本文歸納和總結了現在有源功率因數校正的主要技術和發展趨勢。
  • 功率因數校正技術的新型控制策略綜述
    3.PFC整流器的新型控制策略3.1 單周控制技術 單周期控制技術(One-Cycle Control)[3]是九十年代初由美國加州大學的Keyue M Smedley提出的,它是一種不需要乘法器的新穎控制方法,將這種控制方法應用於功率因數校正是近年來一種新的嘗試
  • 由單相功率因數校正(PFC)實現三相PFC的方案介紹
    功率因數校正(Power Factor CorrecTIon,簡稱PFC)技術,尤其是有源功率因數校正(Active Power FactorCorrection,簡稱APFC)技術可以有效的抑制諧波,已成為研究的熱點
  • PFC基礎概述之功率因數與規範要求解答
    1、摘要 功率因數校正電路對離線電源的輸入電流波形進行整形,以使從電源吸取的有功功率最大化。在理想情況下,電器應該表現為一個純電阻的負載,此時電器吸收的反射功率為零。在這種情況下,本質上不存在輸入電流諧波。電流是輸入電壓(通常是一個正弦波)的完美複製品,而且與其同相。
  • 有源pfc電路工作原理
    在平時的應用過程中,工程師們所常常提到的有源PFC技術,其實就是在整流電路與負載之間增加一個功率變換器,然後應用電流反饋技術,通過一些適當的控制方法不斷調節輸入電流,使其跟蹤輸入正弦波電壓波形,將輸入電流校正成與電網電壓同相的正弦波,因而功率因數可提高到近似為1。由於該方案中應用了有源器件,故稱為有源功率因數校正,頁被稱為APFC。
  • 功率因數飆升 航嘉低端電源加入主動PFC
    ● 名詞解釋:功率因數與PFC  鑑於大多數用戶對電源技術不太了解,所以在介紹冷靜王鑽石Win7版電源之前,還是有必要先簡單解釋一下功率因數和PFC在電源中的作用。  PFC的英文全稱為「Power Factor Correction」,意思是「功率因數校正」,功率因數指的是有效功率與總耗電量(視在功率)之間的關係,也就是有效功率除以總耗電量(視在功率)的比值。 基本上功率因素可以衡量電力被有效利用的程度,當功率因素值越大,代表其電力利用率越高。
  • 功率因數校(PFC)正標準優化解決方案
    這就是「功率因數」,對嗎?但難道它仍然是關於50Hz或60Hz時的「實際」和無功元件嗎?也對也錯。遺憾的是,這種概念化過程有些太過簡單了。  在電力配送系統中,對功率因數校正(PFC)的理解通常是在電力配送系統中的某些點增加(一般來說)電容性電抗以抵消電感性負載效應。我們可以說是「無功」負載,但電源工程師在解決功率因數問題時通常最關心的是電機負載。
  • NCP1601型功率因數校正控制器的原理及應用
    摘要:NCP1601型功率因數校正控制器可工作在不連續信號模式(DCM)和臨界傳導模式(CRM)二種工作模式下。文中介紹NCP1601的結構和特點,詳細敘述其工作原理並給出一種典型應用電路。
  • 採用UC3854的有源功率因數校正電路工作原理與應用
    功率因數校正原理 本文引用地址:http://www.eepw.com.cn/article/188513.htm1.功率因數(PF)的定義 功率因數(PF)是指交流輸入有功功率(P)與輸入視在功率(S)的比值。即 所以功率因數可以定義為輸入電流失真係數()與相移因數()的乘積。