在用ANSYS進行實體分析的時候,只是提供了各種各樣的應力雲圖,有時說一說XYZ方向的應力,有時說等效應力、von misses應力部分說明也不是很明確。這其實就是基礎的材料力學問題:
什麼時候可以查看某方向的應力
應力的定義。我們分析後查看應力,目的就是在於確定該結構的承載能力是否足夠。那麼承載能力是如何定義的呢?比如混凝土、鋼材,應該就是用萬能壓力機進行的單軸破壞。也就是說,我們在ANSYS計算中得到的應力,總是要和單軸破壞試驗得到的結果進行比對的。所以,當有限元模型本身是一維或二維結構時,通過查看某一個方向,如plnsol,s,x等,是有意義的。但三維實體結構中,應力分布要複雜得多,不能僅用單一方向上的應力來代表結構此處的確切應力值——於是就出現了強度理論學說。
材料力學中的四種強度理論
1、第一強度理論:最大拉應力強度理論
該理論認為,材料破壞的主要因素是最大拉應力,無論何種狀態,只要最大拉應力達到材料的單向拉伸斷裂時的最大拉應力,則材料斷裂。其中,某點的最大拉應力數值,就是其第一主應力數值。
2、第二強度理論:最大拉應變理論
引起材料破壞的主要因素,是最大拉應變。無論何種狀態,只要最大拉應變達到材料拉伸斷裂時的最大應變值,則材料斷裂。此時,形式上將主應力的某一綜合值與材料單向拉伸軸向拉壓許用應力比較,這個綜合值就是等效應力——equivalent stress。相關公式。
3、第三強度理論:最大切應力理論
引起材料屈服的主要因素是最大切應力,不論何種狀態,只要最大切應力達到材料單向拉伸屈服時的最大切應力,則認為材料屈服:
4、第四強度理論:畸變能理論
彈性體在外力作用下產生變形,荷載做功、彈性體變形儲能,稱之為應變能(分為畸變能和體積的改變能)。引起材料屈服的主要因素是畸變能密度,無論何種狀態,只要畸變能密度達到材料單向拉伸屈服時的畸變能密度,材料就屈服。
ANSYS後處理中應力查看總結
平面結構,查看某方向應力;
實體脆性結構,如混凝土、巖石、鑄鐵等,根據第一、第二強度理論,查看項目為第一主應力或等效應力;
塑形較強的實體結構,根據第三、第四強度理論,查看項目為應力強度(stress intensity)或Von Misses應力;
總的來說,宗旨就是把各項分布的應力,換算成單向應力,與規範規定的容許應力進行比較
Von Mises 應力是基於剪切應變能的一種等效應力其值為(((a1-a2)^2+(a2-a3)^2+(a3-a1)^2)/2)^0.5其中a1,a2,a3分別指第一、二、三主應力,^2表示平方,^0.5表示開方。
後處理節點應力中x,y,z方向應力和第一、二、三主應力就不介紹了,stress intensity(應力強度),是由第三強度理論得到的當量應力,其值為第一主應力減去第三主應力。Von Mises是一種屈服準則,屈服準則的值我們通常叫等效應力。Ansys後處理中"Von Mises Stress"我們習慣稱Mises等效應力,它遵循材料力學第四強度理論(形狀改變比能理論)。
第三強度理論認為最大剪應力是引起流動破壞的主要原因,如低碳鋼拉伸時在與軸線成45度的截面上發生最大剪應力,材料沿著這個平面發生滑移,出現滑移線。這一理論比較好的解釋了塑性材料出現塑性變形的現象。形式簡單,但結果偏於安全。第四強度理論認為形狀改變比能是引起材料流動破壞的主要原因。結果更符合實際。
一般脆性材料,鑄鐵、石料、混凝土,多用第一強度理論。考察絕對值最大的主應力。
一般材料在外力作用下產生塑性變形,以流動形式破壞時,應該採用第三或第四強度理論。壓力容器上用第三強度理論(安全第一),其它多用第四強度理論。