一切權利歸原作者所有。
僅供學習交流使用,嚴禁用作商業用途。
Courtesy of Allen D. Elster, MRIquestions.com
網站:
https://www.mriquestions.com/
原著:Allen D. Elster, MD
譯註:蔣強盛
What is spin-warp imaging? Isn't this just "regular" MRI?
什麼是 spin-warp 成像?它就是「普通的"磁共振成像嗎?
Since its introduction in the early 1980s, the Fourier transform-based spin-warp imaging technique of Edelstein and colleagues has been the dominant method for spatial encoding the MR signal. If you think about "regular MRI" as acquiring data using successive application of phase- and frequency-encoding gradients, you are thinking about some variant of the spin-warp method.
自二十世紀八十年代早期以來,基於傅立葉變換的 spin-warp 成像技術被 Edelstein 和他的同事們引用之後,這一方法成為成為磁共振信號空間編碼的主要方法。如果你認為「普通磁共振成像」是通過接連的相位編碼與頻率編碼梯度來進行信號採集的話,那麼你說的這個就是 spin-warp 方法的變體。
%%%%%%%%%%%%%%%
那到底什麼是「Spin-Warp」?
%%%%%%%%%%%%%%%
A prototype conventional 2D spin-echo pulse sequence using spin-warp imaging is illustrated below. Here an MR signal is generated after each pair of 90°-180° degree RF-pulses. Slice-select gradients are turned on simultaneously with each RF-pulse so that only a single slice is stimulated.
利用 spin-warp 進行傳統 2D 自旋迴波序列成像方法的雛形如下圖所示。每組 90°-180° 射頻脈衝後產生一個磁共振信號。在每個射頻脈衝激發的同時開啟選層梯度,使得僅有一層被激發。
The digitized values of the MR signal at each time point are then inserted into a single horizontal row of the k-space matrix, filling it from left-to-right.
%%%%%%%%%%%%%%%
如圖所示,為傳統 2D 自旋迴波序列脈衝時序圖,90° 射頻產生 FID 信號,180° 脈衝對其進行重聚焦產生自旋迴波信號。空間定位首先是射頻施加時配合選層梯度,層面內的定位通過相位編碼與頻率編碼;每一個 TR 施加一次不同的相位編碼梯度,信號讀出時施加相同的頻率編碼梯度,採集一個信號填充 k 空間一條相位編碼線。這樣的填充方式就跟紡紗織布一樣,一條一條地填充。而這個填充的順序 profile order 可以有多種模式,比如 linear, low-high, asymmetric 等。相關請參考如下連結:【磁共振成像序列研究】T2W_TSE (第四期)
另外,現在能同時激發多層 2D,即多層同時採集技術 Simultaneous Multi-Slice,飛利浦叫 MultiBand SENSE,GE 叫 HypperBand,西門子叫 SMS。比如顱腦橫斷面成像,那麼激發的射頻就不是一個帶寬,而多個帶寬,然後根據 z 軸方向的多個採集單元將信號分開來。那麼因此需要硬體上的支持,它可以更加快速地加速成像,比如 UltraHigh Resolution DTI 成像。
%%%%%%%%%%%%%%%
Frequency-encoding is performed using a dephase lobe between the 90°- and 180°-pulses and a readout lobe after the 180°-pulse. The dephase lobe imparts a frequency-dependent phase shift to protons along this axis as a function of their spatial position within the gradient. The phases of these spins are inverted by the 180°-pulse then rephased into an echo by the readout lobe.
頻率編碼梯度的施加先在 90° 和 180° 脈衝之間施加一個散相梯度;然後在 180° 脈衝之後施加讀出梯度。散相梯度在它所施加的方向上產生一個與位置相關的依賴於頻率的相移。這些相移之後被 180° 脈衝進行反轉,然後再被讀出梯度重聚相位形成回波。
%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%
The unique feature of the spin-warp sequence is that a variable-amplitude phase-encoding gradient is applied during signal evolution, typically between the 90°- and 180°-pulses. Additional MR signals are collected for this slice during the next TR interval with the same frequency-encoding gradient but with a different phase-encoding gradient. The phase-encode gradient provides a method for differentiating signals according to spatial location along this direction.
Spin-warp 序列的一大特點就是在信號演變過程中施加一幅度變化的相位編碼梯度,通常施加在 90° 脈衝與 180° 脈衝之間。這一層圖像的其他磁共振信號在下一個 TR 中採集,使用相同的頻率編碼梯度但不同的相位編碼梯度。相位編碼梯度能夠區分相位編碼方向上不同位置質子群的磁共振信號。
%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%
With each successive application of the phase-encode gradient, the digitized MR signal is used to fill another row of k-space. For routine MR imaging, this process is typically repeated on the order 256 times. Once all the rows have been filled with data, Fourier transform methods can be used to reconstruct the image.
每一次施加相繼的相位編碼梯度,採集到的磁共振信號被數位化並填充到 k 空間的某一行。對於常規磁共振成像,這一過程通常被重複大約 256 次。一旦所有行的數據被填滿時,就可以利用傅立葉變換進行圖像的重建。
If you've made it this far through the k-space Q&A's I suggest you carve out a quarter hour of time to watch the two videos below by the late Sir Paul Callaghan. Dr. Callaghan carefully lays out the principles of 2DFT spin-warp imaging and demonstrates how k-space and the MR signal are related.
下面是兩個視頻,幫助你更好地理解 Spin-warp 與 k 空間相關知識。
聲明:由於本人才疏學淺,譯註難免會有不當或錯誤的地方,還請各位老師多多指正。
長按二維碼關注CTMR技術園
獲取更多原創分享
歡迎加我個人微信
共同學習,共同探討,共同進步!