一切權利歸原作者所有。
網站:https://www.cis.rit.edu/htbooks/mri/index.html
原著:Joseph P. Hornak, Ph.D.
翻譯:VictorIsJQS
Chapter 5
FOURIER TRANSFORMSFourier Pairs
傅立葉變換對
To better understand how FT NMR functions, you need to know some common Fourier pairs. A Fourier pair is two functions, the frequency domain form and the corresponding time domain form. Here are a few Fourier pairs which are useful in MRI. The amplitude of the Fourier pairs has been neglected since it is not relevant in MRI.
為了更好地解理傅立葉變換在核磁共振中的作用,需要先了解一些常用的傅立葉變換對。傅立葉變換對是一組函數——頻率域形式和其相對應的時間域形式。在此給出了一些在磁共振成像中非常有用的傅立葉變換對。由於磁共振成像與傅立葉變換對的振幅係數相關不大,因此在示例中我們暫且忽略傅立葉變換對的振幅係數。
*****************(一)*******************
Constant value at all time
時間常數函數
A DC offset or constant value.
直流偏置或常數值函數。
A delta function at zero.
頻率位於 0 的 δ 函數。
*****************(二)*******************
Real: cos(2πνt), Imaginary: -sin(2πνt)
實部:cos(2πνt),虛部:-sin(2πνt)
A delta function at ν.
頻率位於 ν 的 δ 函數。
*****************(三)*******************
Comb Function (A series of delta functions separated by T.)
梳狀函數(一系列時間域的 δ 函數,每相鄰兩 δ 函數間隔時間 T,即周期為 T)
A comb function with separation 1/T.
傅立葉變換後的頻率域函數也是梳狀函數,其頻率周期為 1/T。
*****************(四)*******************
Exponential Decay: e-at for t > 0.
指數衰減函數:e-at for t > 0.
Lorentzian
RE: a/(a2 + 4π2ν2)
IM: -2πν/(a2 + 4π2ν2)
洛倫茲函數
實部:a/(a2 + 4π2ν2)
虛部: -2πν/(a2 + 4π2ν2)
%%%%%%%%%%%%%%%
【譯者注】
洛倫茲函數
%%%%%%%%%%%%%%%
*****************(五)*******************
A square pulse starting at 0 that is T seconds long.
矩形脈衝,起於 0 時刻,持續 T 秒。
Sinc
RE: (sin(2t))/(2t)
IM: -(sin2(t))/(t)
Sinc 函數
實部:(sin(2t))/(2t)
虛部:-(sin2(t))/(t)
%%%%%%%%%%%%%%%
【譯者注】
Sinc 函數
%%%%%%%%%%%%%%%
The more advanced student may be wondering about origin of this Fourier pair. The Fourier transform of a rectangular (rect) pulse of amplitude A and width To centered at zero time (t) is a sinc function of form
2 A To [Sin (2πνTo)]/(2πνTo)When this function is offset by To such that the rect now starts at t = 0 and ends at t = 2To the Fourier transform becomes
exp(-i2πνTo) 2ATo [Sin ( π ν To)]/(2πνTo).Expressing the exponential in terms of sine and cosine we have
[Cos(2πνTo) -i Sin(2πνTo)] 2ATo[Sin(2πνTo)]/(2πνTo).Multiplying through we have a real component
Cos(2πνTo) 2ATo[Sin(2πνTo)]/(2πνTo),and an imaginary component
-i Sin(2πνTo) 2ATo[Sin(2πνTo)]/(2πνTo).The real component becomes
2ATo[Sin(2πν2To)]/(2πν2To)using the identity
Cos(x) Sin(x) = 0.5 Sin(2x).The imaginary component becomes
-i 2ATo[Sin2(2πνTo)]/(2πνTo).Adopting the symbolism of Chapter 5 where the pulse has width T instead of 2To we have
RE: (sin(2πνT))/(2πνT)
and
IM: -(sin(πνT))/(πνT).
*****************(六)*******************
Gaussian: exp(-at2)
高斯函數:exp(-at2)
Gaussian: exp(-22/a)
高斯函數:exp(-22/a)
%%%%%%%%%%%%%%%
【譯者注】
高斯函數
註:此圖來自 Wikipedia.org
%%%%%%%%%%%%%%%
長按二維碼關注CTMR技術園