電磁幹擾的屏蔽方法

2020-11-21 電子產品世界

  電磁兼容性(EMC)是指「一種器件、設備或系統的性能,它可以使其在自身環境下正常工作並且同時不會對此環境中任何其他設備產生強烈電磁幹擾(IEEE C63.12-1987)。」對於無線收發設備來說,採用非連續頻譜可部分實現EMC性能,但是很多有關的例子也表明EMC並不總是能夠做到。例如在筆記本電腦和測試設備之間、印表機和桌上型電腦之間以及蜂窩電話和醫療儀器之間等都具有高頻幹擾,我們把這種幹擾稱為電磁幹擾(EMI)。

EMC問題來源

  所有電器和電子設備工作時都會有間歇或連續性電壓電流變化,有時變化速率還相當快,這樣會導致在不同頻率內或一個頻帶間產生電磁能量,而相應的電路則會將這種能量發射到周圍的環境中。

  EMI有兩條途徑離開或進入一個電路:輻射和傳導。信號輻射是通過外殼的縫、槽、開孔或其他缺口洩漏出去;而信號傳導則通過耦合到電源、信號和控制線上離開外殼,在開放的空間中自由輻射,從而產生幹擾。

  很多EMI抑制都採用外殼屏蔽和縫隙屏蔽結合的方式來實現,大多數時候下面這些簡單原則可以有助於實現EMI屏蔽:從源頭處降低幹擾;通過屏蔽、過濾或接地將幹擾產生電路隔離以及增強敏感電路的抗幹擾能力等。EMI抑制性、隔離性和低敏感性應該作為所有電路設計人員的目標,這些性能在設計階段的早期就應完成。

  對設計工程師而言,採用屏蔽材料是一種有效降低EMI的方法。如今已有多種外殼屏蔽材料得到廣泛使用,從金屬罐、薄金屬片和箔帶到在導電織物或卷帶上噴射塗層及鍍層(如導電漆及鋅線噴塗等)。無論是金屬還是塗有導電層的塑料,一旦設計人員確定作為外殼材料之後,就可著手開始選擇襯墊。

金屬屏蔽效率

  可用屏蔽效率(SE)對屏蔽罩的適用性進行評估,其單位是分貝,計算公式為

SEdB=A+R+B

其中

A:吸收損耗(dB)

R:反射損耗(dB)

B:校正因子(dB)(適用於薄屏蔽罩內存在多個反射的情況)

  一個簡單的屏蔽罩會使所產生的電磁場強度降至最初的十分之一,即SE等於20dB;而有些場合可能會要求將場強降至為最初的十萬分之一,即SE要等於100dB。

  吸收損耗是指電磁波穿過屏蔽罩時能量損耗的數量,吸收損耗計算式為

AdB=1.314(f×σ×μ)1/2×t

其中

f:頻率(MHz)

μ:銅的導磁率

σ:銅的導電率

t:屏蔽罩厚度

  反射損耗(近場)的大小取決於電磁波產生源的性質以及與波源的距離。對於杆狀或直線形發射天線而言,離波源越近波阻越高,然後隨著與波源距離的增加而下降,但平面波阻則無變化(恆為377)。

  相反,如果波源是一個小型線圈,則此時將以磁場為主,離波源越近波阻越低。波阻隨著與波源距離的增加而增加,但當距離超過波長的六分之一時,波阻不再變化,恆定在377處。

  射損耗隨波阻與屏蔽阻抗的比率變化,因此它不僅取決于波的類型,而且取決於屏蔽罩與波源之間的距離。這種情況適用於小型帶屏蔽的設備。

近場反射損耗可按下式計算

R(電)dB=321.8-(20×lg r)-(30×lg f)-[10×lg(μ/σ)]

R(磁)dB=14.6+(20×lg r)+(10×lg f)+[10×lg(μ/σ)]

其中

r:波源與屏蔽之間的距離。

SE算式最後一項是校正因子B,其計算公式為

B=20lg[-exp(-2t/σ)]

  此式僅適用於近磁場環境並且吸收損耗小於10dB的情況。由於屏蔽物吸收效率不高,其內部的再反射會使穿過屏蔽層另一面的能量增加,所以校正因子是個負數,表示屏蔽效率的下降情況。

EMI抑制策略

  只有如金屬和鐵之類導磁率高的材料才能在極低頻率下達到較高屏蔽效率。這些材料的導磁率會隨著頻率增加而降低,另外如果初始磁場較強也會使導磁率降低,還有就是採用機械方法將屏蔽罩作成規定形狀同樣會降低導磁率。綜上所述,選擇用於屏蔽的高導磁性材料非常複雜,通常要向EMI屏蔽材料供應商以及有關諮詢機構尋求解決方案。

  在高頻電場下,採用薄層金屬作為外殼或內襯材料可達到良好的屏蔽效果,但條件是屏蔽必須連續,並將敏感部分完全遮蓋住,沒有缺口或縫隙(形成一個法拉第籠)。然而在實際中要製造一個無接縫及缺口的屏蔽罩是不可能的,由於屏蔽罩要分成多個部分進行製作,因此就會有縫隙需要接合,另外通常還得在屏蔽罩上打孔以便安裝與插卡或裝配組件的連線。

  設計屏蔽罩的困難在於製造過程中不可避免會產生孔隙,而且設備運行過程中還會需要用到這些孔隙。製造、面板連線、通風口、外部監測窗口以及面板安裝組件等都需要在屏蔽罩上打孔,從而大大降低了屏蔽性能。儘管溝槽和縫隙不可避免,但在屏蔽設計中對與電路工作頻率波長有關的溝槽長度作仔細考慮是很有好處的。

  任一頻率電磁波的波長為: 波長(λ)=光速(C)/頻率(Hz)

  當縫隙長度為波長(截止頻率)的一半時,RF波開始以20dB/10倍頻(1/10截止頻率)或6dB/8倍頻(1/2截止頻率)的速率衰減。通常RF發射頻率越高衰減越嚴重,因為它的波長越短。當涉及到最高頻率時,必須要考慮可能會出現的任何諧波,不過實際上只需考慮一次及二次諧波即可。

  一旦知道了屏蔽罩內RF輻射的頻率及強度,就可計算出屏蔽罩的最大允許縫隙和溝槽。例如如果需要對1GHz(波長為300mm)的輻射衰減26dB,則150mm的縫隙將會開始產生衰減,因此當存在小於150mm的縫隙時,1GHz輻射就會被衰減。所以對1GHz頻率來講,若需要衰減20dB,則縫隙應小於15 mm(150mm的1/10),需要衰減26dB時,縫隙應小於7.5 mm(15mm的1/2以上),需要衰減32dB時,縫隙應小於3.75 mm(7.5mm的1/2以上)。

  可採用合適的導電襯墊使縫隙大小限定在規定尺寸內,從而實現這種衰減效果。

屏蔽設計難點

  由於接縫會導致屏蔽罩導通率下降,因此屏蔽效率也會降低。要注意低於截止頻率的輻射其衰減只取決於縫隙的長度直徑比,例如長度直徑比為3時可獲得100dB的衰減。在需要穿孔時,可利用厚屏蔽罩上面小孔的波導特性;另一種實現較高長度直徑比的方法是附加一個小型金屬屏蔽物,如一個大小合適的襯墊。上述原理及其在多縫情況下的推廣構成多孔屏蔽罩設計基礎。

  多孔薄型屏蔽層:多孔的例子很多,比如薄金屬片上的通風孔等等,當各孔間距較近時設計上必須要仔細考慮。下面是此類情況下屏蔽效率計算公式

SE=[20lg (fc/o/σ)]-10lg n

其中

fc/o:截止頻率

n:孔洞數目

  注意此公式僅適用於孔間距小於孔直徑的情況,也可用於計算金屬編織網的相關屏蔽效率。

  接縫和接點:電焊、銅焊或錫焊是薄片之間進行永久性固定的常用方式,接合部位金屬表面必須清理乾淨,以使接合處能完全用導電的金屬填滿。不建議用螺釘或鉚釘進行固定,因為緊固件之間接合處的低阻接觸狀態不容易長久保持。

  導電襯墊的作用是減少接縫或接合處的槽、孔或縫隙,使RF輻射不會散發出去。EMI襯墊是一種導電介質,用於填補屏蔽罩內的空隙並提供連續低阻抗接點。通常EMI襯墊可在兩個導體之間提供一種靈活的連接,使一個導體上的電流傳至另一導體。

  封孔EMI襯墊的選用可參照以下性能參數:

  特定頻率範圍的屏蔽效率

  安裝方法和密封強度

  與外罩電流兼容性以及對外部環境的抗腐蝕能力。

  工作溫度範圍

  成本

  大多數商用襯墊都具有足夠的屏蔽性能以使設備滿足EMC標準,關鍵是在屏蔽罩內正確地對墊片進行設計。

  墊片系統:一個需要考慮的重要因素是壓縮,壓縮能在襯墊和墊片之間產生較高導電率。襯墊和墊片之間導電性太差會降低屏蔽效率,另外接合處如果少了一塊則會出現細縫而形成槽狀天線,其輻射波長比縫隙長度小約4倍。

  確保導通性首先要保證墊片表面平滑、乾淨並經過必要處理以具有良好導電性,這些表面在接合之前必須先遮住;另外屏蔽襯墊材料對這種墊片具有持續良好的粘合性也非常重要。導電襯墊的可壓縮特性可以彌補墊片的任何不規則情況。

  所有襯墊都有一個有效工作最小接觸電阻,設計人員可以加大對襯墊的壓縮力度以降低多個襯墊的接觸電阻,當然這將增加密封強度,會使屏蔽罩變得更為彎曲。大多數襯墊在壓縮到原來厚度的30%至70%時效果比較好。因此在建議的最小接觸面範圍內,兩個相向凹點之間的壓力應足以確保襯墊和墊片之間具有良好的導電性。

  另一方面,對襯墊的壓力不應大到使襯墊處於非正常壓縮狀態,因為此時會導致襯墊接觸失效,並可能產生電磁洩漏。與墊片分離的要求對於將襯墊壓縮控制在製造商建議範圍非常重要,這種設計需要確保墊片具有足夠的硬度,以免在墊片緊固件之間產生較大彎曲。在某些情況下,可能需要另外一些緊固件以防止外殼結構彎曲。

  壓縮性也是轉動接合處的一個重要特性,如在門或插板等位置。若襯墊易於壓縮,那麼屏蔽性能會隨著門的每次轉動而下降,此時襯墊需要更高的壓縮力才能達到與新襯墊相同的屏蔽性能。在大多數情況下這不太可能做得到,因此需要一個長期EMI解決方案。

  如果屏蔽罩或墊片由塗有導電層的塑料製成,則添加一個EMI襯墊不會產生太多問題,但是設計人員必須考慮很多襯墊在導電錶面上都會有磨損,通常金屬襯墊的鍍層表面更易磨損。隨著時間增長這種磨損會降低襯墊接合處的屏蔽效率,並給後面的製造商帶來麻煩。

  如果屏蔽罩或墊片結構是金屬的,那麼在噴塗拋光材料之前可加一個襯墊把墊片表面包住,只需用導電膜和卷帶即可。若在接合墊片的兩邊都使用卷帶,則可用機械固件對EMI襯墊進行緊固,例如帶有塑料鉚釘或壓敏粘結劑(PSA)的「C型」襯墊。襯墊安裝在墊片的一邊,以完成對EMI的屏蔽。

襯墊及附件

  目前可用的屏蔽和襯墊產品非常多,包括鈹-銅接頭、金屬網線(帶彈性內芯或不帶)、嵌入橡膠中的金屬網和定向線、導電橡膠以及具有金屬鍍層的聚氨酯泡沫襯墊等。大多數屏蔽材料製造商都可提供各種襯墊能達到的SE估計值,但要記住SE是個相對數值,還取決於孔隙、襯墊尺寸、襯墊壓縮比以及材料成分等。襯墊有多種形狀,可用於各種特定應用,包括有磨損、滑動以及帶鉸鏈的場合。目前許多襯墊帶有粘膠或在襯墊上面就有固定裝置,如擠壓插入、管腳插入或倒鉤裝置等。

  各類襯墊中,塗層泡沫襯墊是最新也是市面上用途最廣的產品之一。這類襯墊可做成多種形狀,厚度大於0.5mm,也可減少厚度以滿足UL燃燒及環境密封標準。還有另一種新型襯墊即環境/EMI混合襯墊,有了它就可以無需再使用單獨的密封材料,從而降低屏蔽罩成本和複雜程度。這些襯墊的外部覆層對紫外線穩定,可防潮、防風、防清洗溶劑,內部塗層則進行金屬化處理並具有較高導電性。最近的另外一項革新是在EMI襯墊上裝了一個塑料夾,同傳統壓制型金屬襯墊相比,它的重量較輕,裝配時間短,而且成本更低,因此更具市場吸引力。

結論

  設備一般都需要進行屏蔽,這是因為結構本身存在一些槽和縫隙。所需屏蔽可通過一些基本原則確定,但是理論與現實之間還是有差別。例如在計算某個頻率下襯墊的大小和間距時還必須考慮信號的強度,如同在一個設備中使用了多個處理器時的情形。表面處理及墊片設計是保持長期屏蔽以實現EMC性能的關鍵因素。

相關焦點

  • 「電磁屏蔽罩」單憑一個金屬罩就能屏蔽電磁幹擾?
    電磁屏蔽罩的作用是屏蔽外界電磁波對內部電路的影響和內部產生的電磁波向外輻射。下面 力達精工帶大家來了解一下電磁屏蔽罩:在電子設備中,為了防止外界電磁場的幹擾,常在示波管、顯像管中電子束聚焦部分的外部加上鐵磁性材料製成一個罩子,把需要 防幹擾的部件罩在裡面,使它和外界電磁場隔離,也可以把輻射 幹擾的部件罩起來,使它不能干擾別的部件,這個罩子 稱為 電磁屏蔽罩。
  • 電磁屏蔽基本原理
    為滿足電磁兼容性要求,對傳導性耦合需採用濾波技術,即採用EMI濾波器件加以抑制;對輻射性耦合則需採用屏蔽技術加以抑制。在當前電磁頻譜日趨密集、單位體積內電磁功率密度急劇增加、高低電平器件或設備大量混合使用等因素而導致設備及系統電磁環境日益惡化的情況下,其重要性就顯得更為突出。屏蔽是通過由金屬製成的殼、盒、板等屏蔽體,將電磁波局限於某一區域內的一種方法。
  • 電磁屏蔽技術探討
    即用金屬屏蔽材料將電磁幹擾源封閉起來,使其外部電磁場強度低於允許值的一種措施;或用金屬屏蔽材料將電磁敏感電路封閉起來,使其內部電磁場強度低於允許值的一種措施。用完整的金屬屏蔽體將帶正電導體包圍起來,在屏蔽體的內側將感應出與帶電導體等量的負電荷,外側出現與帶電導體等量的正電荷,如果將金屬屏蔽體接地,則外側的正電荷將流入大地,外側將不會有電場存在,即帶正電導體的電場被屏蔽在金屬屏蔽體內。
  • 開關電源產生電磁幹擾的具體原因與抑制方法解析
    EMI測試技術 目前診斷差模共模幹擾的三種方法:射頻電流探頭、差模抑制網絡、噪聲分離網絡。用射頻電流探頭是測量差模 共模幹擾最簡單的方法,但測量結果與標準限值比較要經過較複雜的換算。差模抑制網絡結構比較簡單,測量結果可直接與標準限值比較,但只能測量共模幹擾。噪聲分離網絡是最理想的方法,但其關鍵部件變壓器的製造要求很高。
  • 電磁幹擾原理
    電磁幹擾是變頻器驅動系統中的一個主要問題。2.電磁幹擾原理--類型  電磁幹擾可以分為傳導幹擾和輻射幹擾兩種。而電磁波指的是物體所固有的發射和反射在空間中傳播交變的電磁場的物理量。電磁幹擾就是指將振蕩器中電感線圈的兩端,一端接地,另外一端做成一個天線,幹擾信號就會發射出去,若振蕩器的振蕩頻率可調,所發射的幹擾信號頻率就會發生變化。
  • 輕量化電磁屏蔽材料針孔網在雷達天線罩屏蔽和電磁防護應用介紹
    特定波段良好的透波性能,從而保證內部雷達天線系統工作不受影響;網絡示意圖電磁幹擾對現代軍民用設備和人體健康都有不利影響,基於屏蔽電磁幹擾的課題具有重要的應用價值。Dexmet輕量化電磁屏蔽材料,採用結構功能一體化複合材料的思路,通過嵌入在多層複合材料中,實現複合材料局部的屏蔽功能。
  • 電磁幹擾介紹及電磁兼容設計原理及測試方法
    摘要:針對當前嚴峻的電磁環境,分析了電磁幹擾的來源,通過產品開發流程的分解,融入電磁兼容設計,從原理圖設計、PCB設計、元器件選型、系統布線、系統接地等方面逐步分析,總結概括電磁兼容設計要點,最後,介紹了電磁兼容測試的相關內容。
  • 電磁幹擾對高機動雷達機電主控箱的危害和DEXMET屏蔽改善方案
    隨著世界各國對隱形戰機的不斷研發,研發出檢測和跟蹤第五代隱形飛機或其他戰鬥機的高機動雷達勢在必行,隨著信息化技術的迅猛發展和空間立體協同作戰的需要,雷達在工作的環境中可能會有多種雷達協同開機探測,如提前預警、識別和定位敵軍高價值武器目標、通信、作戰指揮、電子戰電子設備等,難以預估的複雜惡劣環境對雷達抗電磁幹擾有著極其嚴格的考驗
  • 電磁屏蔽EMI導電膠點膠加工的原理
    電子元件對外界的幹擾,稱為EMI(Electromagnetic Interference);電磁波會與電子元件作用,產生被幹擾現象,稱為EMS(Electromagnetic Susceptibility)。
  • 電磁幹擾測量和判斷幹擾發生源的方法
    當你的產品由於電磁幹擾發射強度超過電磁兼容標準規定而不能出廠時,或當由於電路模塊之間的電磁幹擾,系統不能正常工作時,我們就要解決電磁幹擾的問題。要解決電磁幹擾問題,首先要能夠「看」到電磁幹擾,了解電磁幹擾的幅度和發生源。本文要介紹有關電磁幹擾測量和判斷幹擾發生源的的方法。
  • 開關電源電磁幹擾的產生機理與抑制技術
    因而,抑制電磁幹擾應從這三方面人手。抑制幹擾源、消除幹擾源和受擾設備之間的耦合和輻射、提高受擾設備的抗擾能力,從而改善開關電源的電磁兼容性能的目的。1.1 採用濾波器抑制電磁幹擾濾波是抑制電磁幹擾的重要方法,它能有效地抑制電網中的電磁幹擾進入設備,還可以抑制設備內的電磁幹擾進入電網。
  • 製造阻止電磁幹擾的MXene膜的新方法
    圖片來源:紐約大學丹頓工程學院設備,可穿戴醫療植入物和其他應用中電子設備的激增和小型化使得阻斷電磁幹擾(EMI)的技術變得尤為重要,同時使其實施更具挑戰性。儘管EMI可能會導致關鍵應用中的通信中斷,從而導致潛在的災難性後果,但傳統的EMI屏蔽罩需要較大的厚度才能有效發揮作用,從而妨礙了設計靈活性。
  • 電磁屏蔽用導電膠點膠加工的介紹
    導電膠點膠加工是經過自動點膠機直接將導電膠水經過氣壓塗在需要做電磁屏蔽的產品上面。導電膠點膠加工用到的導電膠是一種雙組份高溫固化的導電矽膠,可以適用於FIP導電膠點膠加工現場成型技術點膠工藝。導電膠點膠加工EMI電磁屏蔽導電膠點膠加工EMI電磁屏蔽導電膠點膠加工工藝是做電磁屏蔽抵抗電磁幹擾
  • 電磁屏蔽技術綜合分析
    本文引用地址:http://www.eepw.com.cn/article/190488.htm關鍵詞:電磁屏蔽;屏蔽材料;屏蔽效能0 引言 近幾年來,隨著電磁兼容工作的開展,電磁屏蔽技術應用得越來越廣泛。
  • 智能可穿戴《ACS Nano》電磁幹擾屏蔽的MXene超薄水凝膠
    【背景介紹】太赫茲技術的快速發展需要高性能的電磁幹擾(EMI)屏蔽材料來創建安全的電磁環境。儘管在實現卓越的屏蔽效率(SE)方面取得了巨大突破,但傳統的屏蔽材料仍具有高反射率,一旦形成就無法進行重新編輯或回收,從而導致有害的二次電磁汙染和適應性差。
  • 汽車內電磁幹擾現象與減小汽車對無線電幹擾的措施
    同時由車外收發兩用機之類的無線電設備、雷達、廣播電臺等發射無線電波,會干擾汽車上的儀器,使電子控制裝置失控。因此, 汽車上應用計算機(控制器)等,都應具有良好的電磁屏蔽措施,一旦屏蔽損壞,也會導致工作異常。  車內電磁幹擾傳播方式特點:  (1)感性負載產生沿電源線傳導的幹擾。汽車內使用的各種感性負載,如:雨刮器驅動電機、汽車啟動電機、暖風電機等。
  • 電磁幹擾很嚴重,如何提高CAN總線電磁兼容性
    但是,工業現場環境惡劣,電磁幹擾較為嚴重,如何保證CAN總線通訊的可靠性尤為重要。本文著重介紹CAN總線電磁兼容性能,提出幾種改善CAN總線電磁兼容性能的措施。國際上已經開始對電子產品的電磁兼容性做強制性限制,電磁兼容性能已經成為考核產品性能的重要指標之一,因此必須予以重視。電磁兼容主要包括兩方面的內容,一個是產品本身對外界產生不良的電磁幹擾EMI影響,稱為電磁幹擾發射;另一個是對外界電磁信號的敏感程度,稱為電磁敏感度EMS。幹擾源、耦合途徑及敏感設備是電磁兼容的三要素,缺一不可。電磁幹擾信號的耦合途徑有傳導和輻射兩種。
  • 寧波材料所研發出「透明金屬」,可屏蔽99.99%以上電磁幹擾
    今天,中科院寧波材料所科研人員魯越暉向記者展示了一項最新應用研究成果,一種由納米金屬與塑料複合的「透明」電磁防護材料。從肉眼上來看,這款材料在透光性上與普通透明玻璃、塑料等無差別,但能屏蔽99.9999%以上的電磁波幹擾,有望成為對抗電磁輻射的新型「武器」。
  • 「知識課堂」排除電磁流量計幹擾的方法
    電磁流量計測量原理為基於法拉第電磁感應定律。流量計的測量管是一內襯絕緣材料的非導磁合金短管。兩隻電極沿管徑方向穿通管壁固定在測量管上。線圈勵磁時,將在與測量管軸線垂直的方向上產生一磁通量密度為B的工作磁場。1:靜電和電磁波幹擾。靜電和電磁波會通過電磁流量計傳感器和轉換器間的信號線引入,通常若良好屏蔽(如信號線用屏蔽電纜,電纜置於保護鐵管內)是可以防治的。
  • 開關電源的電磁幹擾分析 PCB布局及布線介紹
    但由於會產生電磁幹擾,其進一步的應用受到一定程度上的限制。本文將分析開關電源電磁幹擾的各種產生機理,並在其基礎之上,提出開關電源的電磁兼容設計方法。 開關電源的電磁幹擾分析 開關電源的結構如圖1所示。首先將工頻交流整流為直流,再逆變為高頻,最後再經整流濾波電路輸出,得到穩定的直流電壓。電路設計及布局不合理、機械振動、接地不良等都會形成內部電磁幹擾。