尊敬的各位評委老師好,我是1號考生,我抽到的試講篇目是《否命題》。下面,開始我的試講。上課,同學們好,請坐。
在上一節課中,我們學習了互逆命題。我們請1號同學來說一下互逆命題的概念。回答正確,請坐。一般地,對於兩個命題,如果一個命題的條件和結論是另一個命題的結論和條件,那麼這樣的兩個命題叫做互逆命題。其中一個命題叫做原命題,另一個命題叫做原命題的逆命題。我們可以用數學語言這樣來表達。原命題是,若p,則q;逆命題是,若q,則p。我們請2號同學為大家舉一個互逆命題的例子。很好,請坐。2號同學說,如原命題是若x>1則y>0,那麼逆命題就是若y>0則x>1,前一個命題和後一個命題叫做互逆命題。看來2號同學對上一節課的知識掌握得很好。
下面請大家翻到課本第4頁的思考題。我們已經知道了命題(1)和命題(2)叫做互逆命題,它們的條件和結論剛好相反,那麼命題(1)和命題(3)又有什麼關係呢?哪一位同學可以來為大家說一下?回答得很好,請坐。這就是我們這一節課要學習的內容——否命題。正如剛才那位同學所說,對於命題(1)(3),其中一個命題的條件和結論恰好是另一個命題的條件的否定和結論的否定,這樣的兩個命題叫做互否命題。如果我們把其中一個命題叫做原命題,那麼另一個命題叫做原命題的否命題。
我們可以用數學語言將原命題表示為:若p,則q。為了書寫簡捷,我們常常把條件p的否定和結論q的否定分別記作「」和「」,讀作「非p」和「非q」。那麼,原命題的否命題就可以表示為:若,則。
我們舉一個簡單的例子來說,如果原命題是「同位角相等,兩直線平行」,那麼它的否命題就是「同位角不相等,兩直線不平行」。又如,如果原命題是「若整數a不能被2整除,則a是奇數」,那麼它的否命題就是「若整數a能被2整除,則a是偶數」。
接下來,同學們在小組內大家一起討論一下教材上的探究問題,時間為5分鐘,稍後請小組代表來和大家分享一下。我們請一位同學舉一個互否命題的例子,並判斷原命題和否命題的真假。請3號同學為大家展示一下。3號同學說,如原命題是「若,則」,那麼它的否命題就是「若,則」,這兩個命題為互否命題,前一個命題為真命題,後一個命題為假命題。回答得相當完整,完全正確。
為了大家能夠對本節課的知識有更清晰的梳理和更有效地掌握,我們通過課本第6頁練習兩個題來進行鞏固。由於逆否命題還沒學習過,所以大家只需要寫出命題的逆命題和否命題,並判斷真假即可。首先給大家5分鐘時間,我們請4、5、6號同學上臺演板解答,每人扮演一個小題,其他同學自行思考完成,我會轉堂觀看大家解答,開始吧。好了,時間到。我們一起來看這三位同學的解答過程。大家說,他們做得對不對啊?對,他們的解答都正確。
那這一節課的重點知識就結束了。經過本節課的學習,我們學習了很多新的知識和方法,誰想和大家分享一下你的收穫呢?這位同學說,通過對本節課的學習,你複習了之前所學習的互逆命題、原命題、逆命題的概念,還學習了什麼是互否命題,什麼是否命題,還學會了互否命題之間的轉化和判斷,能寫出一個命題的否命題並判斷真假。總結得很不錯,你總結了本節課的重點知識,請坐。看來大家收穫真不少。
課上時間有限,課下還需要繼續鞏固。布置今天的作業為: 必做題:導學案上的第1、2、3題。 選做題:預習下一節課的內容—逆否命題,嘗試寫出教材練習中命題的逆否命題,並判斷真假。 好了,這節課就到這裡,下課。
各位評委老師,我的試講到此結束,感謝各位評委老師的聆聽。