連結:http://users.rowan.edu/~polikar/WTtutorial.html
該教程的目錄如下,主要分為四個部分:1)概覽:為什麼需要小波變換;2)基礎:傅立葉變換及短時傅立葉變換;3)多尺度分析:連續小波變換;4)多尺度分析:離散小波變換將數學變換作用於信號,可以獲得比原來的信號更豐富的信息。假設時域信號為原始信號,經任何數學變換後的信號為處理後的信號。
有許多變換可以用,其中傅立葉變換是最受歡迎的。
時域信號的信息可以用時間-幅度圖來刻畫,即橫軸是時間,縱軸是信號的幅度。然而,時間-幅度圖對於大多數信號處理相關的應用而言,並不是最佳的方式。大多數情況下,最明顯的特徵信息隱藏在信號的頻域內。頻譜圖是從頻域角度刻畫信號的,且能顯示信號中存在什麼樣的頻率。
那我們怎麼測量一個信號的頻率呢?或者說怎麼超出信號中的頻率成分?答案是傅立葉變換。如果對時域信號進行傅立葉變換,那麼就可以獲得信號的頻率-幅度圖【頻譜圖】(頻率軸從0一直到無窮大,對於每個頻率都對應一個幅度值)。
頻譜圖總是對稱的,但是對稱部分所含信息一樣。因此,只需保留一般的頻譜圖即可。
2)為什麼需要頻域信息?
通常情況下,在時域上不能輕易獲取的信息可以在頻域上獲得。小波變換能夠同時提供時域和頻域上的信息,即給出原始信號的時頻表示。小波變換具體的工作原理放在算是傅立葉變換之後的內容介紹,因為小波變換的提出就是為了解決短時傅立葉變換解析度問題的。
To make a real long story short, we pass the time-domain signal from various highpass and low pass filters,which filters out either high frequency or low frequency portions of the signal. This procedure is repeated,every time some portion of the signal corresponding to some frequencies being removed from the signal.簡單地說,時域信號分別經過高通濾波器和低通濾波器,則可以將信號中的高頻和低頻成分分離出來。
Here is how this works: Suppose we have a signal which has frequencies up to 1000 Hz. In the first stagewe split up the signal in to two parts by passing the signal from a highpass and a lowpass filter (filtersshould satisfy some certain conditions, so-called admissibility condition) which results in two differentversions of the same signal: portion of the signal corresponding to 0-500 Hz (low pass portion), and 500-1000 Hz (high pass portion).
Then, we take either portion (usually low pass portion) or both, and do the same thing again. This operationis called decomposition.註:小波包變換也會對高頻部分進行降解。
Assuming that we have taken the lowpass portion, we now have 3 sets of data, each corresponding to thesame signal at frequencies 0-250 Hz, 250-500 Hz, 500-1000 Hz.
Then we take the lowpass portion again and pass it through low and high pass filters; we now have 4 sets ofsignals corresponding to 0-125 Hz, 125-250 Hz,250-500 Hz, and 500-1000 Hz. We continue like this untilwe have decomposed the signal to a pre-defined certain level. Then we have a bunch of signals, whichactually represent the same signal, but all corresponding to different frequency bands.
We know which signal corresponds to which frequency band, and if we put all of them together and plot them on a 3-D graph, we will have time in one axis, frequency in the second and amplitude in the third axis. This will showus which frequencies exist at which time
Higher frequencies are better resolved in time, and lower frequencies are better resolved in frequency.
不確定性原則:我們不能精確地知道在什麼時刻存在什麼樣的頻率,只能知道在哪個時間段內存在哪些頻率帶。