Nano Lett. | 噴氣紡絲實現精確摻雜與包覆提升高電壓鈷酸鋰正極性能

2020-11-25 騰訊網

英文原題:Blow-Spinning Enabled Precise Doping and Coating for Improving High Voltage Lithium Cobalt Oxide Cathode Performance

通訊作者:姚宏斌, 中國科學技術大學

作者:Te Tian (田特), Tian-Wen Zhang (張天文), Yi-Chen Yin (殷逸臣), Yi-Hong Tan (譚一弘), Yong-Hui Song (宋永慧), Lei-Lei Lu (盧磊磊) and Hong-Bin Yao (姚宏斌)*

鋰離子電池已廣泛地應用於手機、可攜式電子產品和電動汽車。其中的正極材料性能是限制其能量和功率密度的主要因素。目前有許多先進的正極材料已經被報導出來,例如富鋰錳和富鎳過渡金屬氧化物,其研究也已取得很大進展。然而,這些材料依然面臨嚴重的電壓和容量衰減等重大問題。在已經商業化的正極材料中,鈷酸鋰(LiCoO2)是最主要、最成功的正極材料。然而,對於商用的LiCoO2正極材料,一般來說,它們使用的實際容量只佔其理論容量的一半多一點。如此大的不可逆容量主要是由於當脫出多餘0.5個Li時,存在嚴重的不可逆相變,造成電極材料容量的嚴重衰減。另一方面,正極電極材料在高充電電壓時的界面惡化問題也嚴重地影響其循環穩定性。

近日,中國科學技術大學姚宏斌教授課題組在Nano Letters上發表論文,報導了該課題組通過噴氣紡絲一步燒結製備了Mn、La精確共摻雜和富鈦層包覆的LiCoO2正極材料,獲得了在4.5 V高電壓下優異的倍率性能和循環穩定性。通過電池充放電曲線測試發現,Mn離子摻雜有效地抑制了高電壓時LiCoO2材料的相變。通過XRD和GITT的表徵發現,La離子成功進入了LiCoO2的晶格,使得LiCoO2晶體層間距變大,Li+的遷移阻力減小,有效提高了材料的倍率性能。另外他們還發現,摻雜的Ti離子並不會進入LiCoO2材料的晶格,而是會富集於材料的表面,形成一種富鈦氧化物保護層,有效穩定了材料的界面,提高其循環穩定性。

圖1. Mn4+和La3+摻雜機理電化學測試

圖2. 富鈦包覆層的HAADF-STEM表徵

圖3. 優化後的LiCoO2正極的循環和倍率性能測試

Blow-Spinning Enabled Precise Doping and Coating for Improving High-Voltage Lithium Cobalt Oxide Cathode Performance

Te Tian, Tian-Wen Zhang, Yi-Chen Yin, Yi-Hong Tan, Yong-Hui Song, Lei-Lei Lu and Hong-Bin Yao*

Nano Lett., 2019, DOI: 10.1021/acs.nanolett.9b04486

Publication Date: December 11, 2019

Copyright 2019 American Chemical Society

長按下面二維碼關注「ACS美國化學會"

相關焦點

  • 進展 | 高電壓鈷酸鋰鋰離子電池正極材料研究進展
    由於其具有很高的材料密度和電極壓實密度,使用鈷酸鋰正極的鋰離子電池具有最高的體積能量密度,因此鈷酸鋰是消費電子用鋰離子電池中應用最廣泛的正極材料。隨著消費電子產品對鋰離子電池續航時間的要求不斷提高,迫切需要進一步提升電池體積能量密度。
  • 中科院高電壓鈷酸鋰鋰離子電池正極材料研究獲進展
    由於其具有很高的材料密度和電極壓實密度,使用鈷酸鋰正極的鋰離子電池具有高的體積能量密度,因此鈷酸鋰是消費電子用鋰離子電池中應用廣泛的正極材料。隨著消費電子產品對鋰離子電池續航時間的要求不斷提高,迫切需要進一步提升電池體積能量密度。
  • 物理所在高電壓鈷酸鋰鋰離子電池正極材料研究取得進展
    由於其具有很高的材料密度和電極壓實密度,使用鈷酸鋰正極的鋰離子電池具有最高的體積能量密度,因此鈷酸鋰是消費電子用鋰離子電池中應用最廣泛的正極材料。隨著消費電子產品對鋰離子電池續航時間的要求不斷提高,迫切需要進一步提升電池體積能量密度。
  • 物理所在高電壓鈷酸鋰鋰離子電池正極材料研究中獲進展
    鈷酸鋰(LiCoO2)是較早商業化的鋰離子電池正極材料,其具有很高的材料密度和電極壓實密度,使用鈷酸鋰正極的鋰離子電池具有較高的體積能量密度,因此,鈷酸鋰是消費電子用鋰離子電池中應用最廣泛的正極材料之一。隨著消費電子產品對鋰離子電池續航時間的要求提高,需要進一步提升電池體積能量密度。
  • 中科院物理所:在高電壓鈷酸鋰鋰離子電池正極材料研究中獲進展
    鈷酸鋰(LiCoO2)是較早商業化的鋰離子電池正極材料,其具有很高的材料密度和電極壓實密度,使用鈷酸鋰正極的鋰離子電池具有較高的體積能量密度,因此,鈷酸鋰是消費電子用鋰離子電池中應用最廣泛的正極材料之一
  • 「超威集團」前沿 | 中科院高電壓鈷酸鋰鋰離子電池正極材料研究獲進展
    鈷酸鋰(LiCoO2)是最早商業化的鋰離子電池正極材料。由於其具有很高的材料密度和電極壓實密度,使用鈷酸鋰正極的鋰離子電池具有高的體積能量密度,因此鈷酸鋰是消費電子用鋰離子電池中應用廣泛的正極材料。隨著消費電子產品對鋰離子電池續航時間的要求不斷提高,迫切需要進一步提升電池體積能量密度。
  • 進展|4.6V高電壓鈷酸鋰鋰離子電池正極材料研究進展
    鈷酸鋰(LiCoO2)是最早商業化的鋰離子電池正極材料。由於其具有很高的材料密度和電極壓實密度,使用鈷酸鋰正極的鋰離子電池具有最高的體積能量密度,因此鈷酸鋰是消費電子市場應用最廣泛的正極材料。提高鈷酸鋰電池的充電電壓可以提高電池的體積能量密度,其充電截止電壓已經從1991年最早商業化時的4.20V逐漸提升至4.45V(vs Li+/Li),體積能量密度已經超過700Wh/L。目前,開發下一代更高電壓的鈷酸鋰材料已經成為科研界及企業共同關注的熱點。隨著充電電壓的提高,鈷酸鋰材料會逐漸出現不可逆結構相變、表界面穩定性下降、安全性能下降等問題,限制了其實際應用。
  • 鋰電池正極材料路徑漸明 鈷酸鋰將逐漸被替代
    2012年鋰離子電池佔全球鋰終端需求的41%,鋰離子電池的輸入輸出性能主要取決於電池內部材料的結構和性能。這些電池內部材料包括負極材料、電解質、隔膜和正極材料等。其中正極材料是最核心的關鍵材料,佔據鋰電池成本的30-40%。消費類電子產品市場(筆記本電腦、平板電腦、智慧型手機等)的快速擴張帶來鋰電池需求的爆發式增長。
  • 我國鋰電正極材料市場現狀分析
    正極材料決定了鋰電池的能量密度、壽命和安全性等指標,佔鋰電池成本的30%左右。正極材料產業主要分布在中、日、韓。動力電池領域,中國以磷酸鐵鋰(LFP)為主,國外為錳酸鋰(LMO)和鎳鈷錳酸鋰(NCM);3C領域百花齊放,包括鈷酸鋰(LCO),NCM,鎳鈷鋁(NCA),LFP和LMO。
  • 年產1000噸鋰離子電池正極材料-鈷酸鋰項目
    一、項目名稱      年產1000噸鋰離子電池正極材料-鈷酸鋰二、所在地區      銅陵市三、項目建設內容及規模   新建年產1000噸鋰離子電池正極材料-鈷酸鋰 四、產品市場分析   鈷酸鋰市場隨著鋰離子電池的快速發展而迅速發展,目前世界年總消耗量已超過15000噸;我國年總消耗量達
  • 鈷酸鋰電池正負極反應式_鈷酸鋰電池有毒嗎
    打開APP 鈷酸鋰電池正負極反應式_鈷酸鋰電池有毒嗎 網絡整理 發表於 2020-04-14 10:12:02     鈷酸鋰電池正負極反應式   鈷酸鋰電池的鈷酸鋰化學式為LiCo02,是一種無機化合物,一般使用作鋰離子電池的正電極材料。
  • 三河回收鈷酸鋰價格量多價優
    三河回收鈷酸鋰價格量多價優深圳裕隆鈷酸鋰廢電池回收公司---主要回收業務:稀有金屬類、鎳鈷電池類1. 廢鎳錫:廢鎳板、鎳塊、鎳珠、梅花鎳、發泡鎳、儲氫合金粉、氧化鎳、鎳片、鎳渣、鎳泥、鎳氫、鎳鎘電池。
  • 2020WNEVC前沿技術解讀|高電壓鎳錳酸鋰正極材料及電池技術
    近年來,隨著電動汽車的高速發展,人們對電池能量密度、安全性、成本和環保等方面有更高追求,高電壓正極作為提升電池能量密度的重要手段已成為目前液態鋰離子電池的發展趨勢,也是目前的研究重點。鎳錳酸鋰作為一種高電壓正極材料,其電壓平臺在4.7 V左右,比能量超過600 Wh/kg,由於鎳錳酸鋰材料主要由鎳元素和錳元素組成,不含鈷元素,因此較為環保,成本也較為低廉。
  • 被廣泛看好的正極材料尖晶石錳酸鋰為什麼沒有大規模應用?
    沉澱法和溶膠-凝膠法能夠彌補固相反應的缺陷,起到改善錳酸鋰性能的作用,可是仍然不能大幅度減少反應時間,而且存在步驟較多的問題。 研究者們嘗試新的合成方法,期望得到讓人滿意的錳酸鋰材料,例如日本研究者在鋰離子蓄電池正極材料錳酸鋰的合成過程中採用了液體雷射消融技術,結果令人十分滿意。
  • 永濟回收鈷粉陶瓷料公司
    永濟回收鈷粉陶瓷料公司【深圳裕隆鈷酸鋰廢電池回收公司】長期專業回收:1:廢電池類:(鈷酸鋰、鈷粉、四氧化三鈷、氧化鈷、氧化亞鈷、三元材料、鎳鈷錳酸鋰、鈷泥、鈷漿、A品、B品電池、廢舊鋰電、鎳氫、鎳鎘、聚合物電池、18650電池、電池正負極、手機電池保護板各型號鋼殼電芯,鋁殼電芯等一切含鈷廢料)
  • 技術講座 鋰離子電池-鈷酸鋰電池優缺點
    鈷酸鋰電池是以鈷酸鋰(化學分子式LiCoO2)化合物作為正極材料活性物質的鋰離子電池,在所有的充電鋰電池中,鈷酸鋰是最早應用的正極材料
  • 鋰電池正極材料的現狀和未來發展趨勢
    ;c.摻雜和接枝官能團;d.微調粒子的形態;e.表面包覆;f.對電解質的改性。 過渡金屬氧化物 1.鈷酸鋰LCO LCO正極材料是由Goodenough首次提出,並且由Sony首先將其並成功商業化。 2.鎳酸鋰LNO LNO具有和LiCoO相同的晶體結構和275mAh/g的類似理論比容量,與LCO相比主要在成本上低很多,但是LNO的問題在於Ni2 有替代Li 的傾向,在脫嵌Li的過程中會堵住Li的擴散通道。安全性和穩定性方面LNO比LCO更容易造成熱失控。另外改性上可以在高SOC條件下的熱穩定性差可通過Mg摻雜來改善,添加少量Al能提高其熱穩定性和電化學性能。
  • 湖北回收鋰電池正極片廠家
    湖北回收鋰電池正極片廠家深圳裕隆鈷酸鋰廢電池回收公司---主要回收業務:稀有金屬類、鎳鈷電池類1. 廢鎳錫:廢鎳板、鎳塊、鎳珠、梅花鎳、發泡鎳、儲氫合金粉、氧化鎳、鎳片、鎳渣、鎳泥、鎳氫、鎳鎘電池。
  • 青島能源所開發出高性能無鈷富鋰錳基正極材料體系
    富鋰錳基鋰電池正極材料因其高比容量、高工作電壓、熱穩定性好、低成本等優點一直備受關注,是一種非常有潛力的動力型正極材料。但是其本身在循環中首效低、循環性能和倍率性能差、電壓衰降嚴重、無相匹配的高壓電解液等缺點阻礙了其進一步商業化和產業化的發展。
  • 動力鋰電池正極材料鈷酸鋰磷酸鐵鋰難敵三元鋰?
    液態金屬技術最初為大家熟知的是,蘋果將其用作取卡針,其高硬度、抗腐蝕、高耐磨等性能遠超普通金屬。HTC、三星、諾基亞等公司亦已經布局液態金屬的應用,國內個性化十足的OPPO、Vivo、華為等公司的部分終端已經使用液態金屬材質的SIM卡託槽。隨著大面積工藝的成熟,液態金屬有望在智能終端框架和背板方面批量應用,液態金屬時代將呼之欲出。