高中數學:三角形「四心」的向量表示問題解析,建議收藏列印

2021-01-08 高考小學霸

大家好,我是清北助學團隊劉洋。

清北助學團隊:由清華北大學子組成,致力於高中教育,每天分享高中提分秘籍,答題技巧,幫助高中生快速提分。

向量本身是一個幾何概念,具有代數形式和幾何形式兩種表示方法,易於數形結合,而且向量問題在進行數列結合時具有新形式、新特點,因此可稱為高中數學的一個交匯點,三角形的「四心」(外心、內心、重心、垂心)是與三角形有關的一些特殊點,各自有一些特殊的性質。在高考中,往往將「向量作為載體」,對三角形的「四心」進行考查。

針對此,小編給大家整理了一份「三角形四心的向量表示」,幫助大家快速解決這一類難題。

由於篇幅有限,以下是部分分享。

完整電子版以及更多學習資料獲取方式:

請點擊我的頭像然後發送私信「資料」,即可免費領取。

相關焦點

  • 高中數學:平面向量與三角形四心的聯繫匯總,建議收藏!
    三角形的外心,內心,重心以及垂心,在高考中考查是比較棘手的問題,現在課本中的內容,更加引起我們的重視,尤其是與平面向量相結合在一起的,就更加難於掌握了。對於這一部分的知識,同學們一定要重視。向量它是高中數學中引入的重要概念,作為解決幾何問題的一個重要工具。今天邱崇學長就平面向量與三角形四心的聯繫給大家做一個歸納總結。在這個過程中,同學們可以實際練習一下,多加重視,一定可以搞定這一問題的。每天分享邱崇學長數學秒殺乾貨,還不快來關注我!
  • 高中數學,(平面向量)高中數學平面向量基本定理及坐標表示
    向量是溝通代數、幾何與三角函數的一種工具,並且是解決幾何問題中的一種有力工具。向量概念引入後,全等和平行、相似、垂直、勾股定理就可以轉換成向量的加減法、數乘向量、數量積運算,從而將圖形的基本性轉化為向量的運算體系。我們理解空間向量的概念,掌握空間向量的加法、減法和數乘。
  • 高中數學平面向量-三角形面積公式拓展
    三角形面積公式相必大家都已經很熟知(一個是底乘高除二,一個是三角函數公式),覺得這塊內容很簡單;但是如果把三角形放在平面直角坐標系內,還是一個不規則三角形的話,求其面積的難度就被大大增加了。很多考題曾經出現過這樣的情況,難倒了不少考生。
  • 高中數學公式匯總,還沒掌握的建議收藏
    高中數學公式匯總,還沒掌握的建議收藏 1.
  • 高中數學丨破解平面向量問題的5種常用方法,學霸都已經掌握了!
    高考重點考查向量的基本概念及運算,尤其是向量數量積運算及其幾何表示,平面向量的坐標運算也是運算的關鍵,通過坐標運算可將幾何問題轉化成代數問題,進行垂直、平行關係的判定及夾角的求解,從形式上看,既有選擇題,也有填空題,從能力上看,側重於對學生運算和屬性結合能力進行考查。
  • 高中數學:向量巨難題型——四心問題解題方法,打破傳統解題思維
    同學們,今天給大家分享一下向量四心問題的解題技巧。大家有沒有覺得向量四心問題的考察非常之難,以至於競賽題都經常考出來向量四心問題。所以,如果我們平時遇到這種題目,不能常規做,常規做在五分鐘內未必能得出答案的,那我們今天講一個技巧,如果把這個技巧思維掌握透徹,這種題目也能夠秒出答案的。那麼,這個技巧的核心思維就是:特殊化!
  • 高中數學必考!基本不等式知識點總結,提分必備,建議列印
    不等式是高考的重要內容之一,高考必考,它所考查的重點是不等式的證明、絕對值不等式的解法以及數學歸納法在不等式中的應用等.命題的熱點是絕對值不等式的解法,以及絕對值不等式與函數的綜合問題的求解.本部分命題形式單一、穩定,是三道選考題目中最易得分的,所以可重點突破。
  • 高考數學:三角函數專題典型例題+解析,強烈建議高中生做一遍!
    高中數學三角函數最困擾了!很多同學感覺數學很難提分,其中三角函數當屬最難,尤其後面很多知識都會和三角函數結合使用,比如平面向量、解三角形、數列等等。但其實三角函數很常見、很容易。只要同學們掌握好正確的解題方法,熟悉最常見的經典例題,這對高考提分數學很重要。今天社長給同學們整理了高中數學最全三角函數專題典型例題+解析,強烈建議同學們做一遍!
  • 高中數學向量題型怎麼做,掌握這些內容,高考向量輕鬆解決
    向量問題在高中的數學題中,一直以來都是一塊重要的內容,而且關於向量問題因為非常注重字母的順序,所以稍微有一個不小心就會將題目做錯,這類題目考察學生的能力十分綜合,難度也非常的大,這類型題目常常還以幾何圖形為載體,考察我們幾何圖形的向量問題,所以常常就成了我們高考考題的熱門考點,但是這類型題目也對學生們的觀察和思維能力有一定要求
  • 抓住高中三角形五心向量結論本質,才能理解透、記得牢
    溫馨提示:本文屬於高中數學《三角函數與平面向量》,該模塊的創作已過半,歡迎持續關注。摘要:根據由面積比關系所表示的共始點三向量一般關係式,利用從一般到特殊的數學思想可知,該思路同樣適用於三角形五心的向量結論有關問題。
  • 寒假複習五|以向量為載體的解析幾何以及三角函數問題求解策略
    2.以向量為載體求相關變量的取值範圍,是向量與函數、不等式、三角函數等相結合的一類綜合問題.通過向量的坐標運算,將問題轉化為解不等式或求函數值域,是解決這類問題的一般方法.3.有關線段的長度或相等,可以用向量的線性運算與向量的模.
  • 好題彙編:高中數學三角形幾何運算針對練,基礎題要掌握
    解三角形專題是高中的重點專題,也是考點之一。三角形的運算可以說是解三角形的基礎題型了,許多可以通過套用公式或者變形式去進行求解,相對比較簡單。同學們都知道,幾何題中涉及的計算量會比較大,如果練基本的計算功底都不具備的話,就算知道解題思路也沒法去解題的。
  • 高中數學平面向量必考知識與題型解法大全,帶你輕鬆學向量!
    高考的時候平面向量這方面的知識是考試的重點也是難點,每年都會以各種形式出現,而這一部分的知識很多同學說學不明白,學姐來安利這一部分啦!適當的空間直角坐標系,利用向量的坐標運算證明線線、線面、面面的平行與垂直,以及空間角(線線角、線面角、面面角)與距離的求解問題,是高考的考查熱點,以解答題為主,多屬中檔題。在高考備考中精心準備,加強系統化、專業化訓練完全能夠成為學生的得分點!
  • 高中數學解析幾何再難,也不過這「6種」題型詳細解析,三年適用
    針對解析幾何各種題型給同學們一些方法題型一中點弦問題具有斜率的弦中點問題,常用設而不求法(點差法)。這個方法要好好地訓練,還要理解方法的本質及內涵,比如利用點差法解決相關的曲線上是否存在一點關於某直線對稱的問題。
  • 高中數學說課稿:《平面向量》
    ,也充分考慮到了這一點.下面我從教材分析,教學目標的確定,教學方法的選擇和教學過程的設計四個方面來匯報我對這節課的教學設想.一教材分析(1)地位和作用向量是近代數學中重要和基本的概念之一,有著深刻的幾何背景,是解決幾何問題的有力工具.向量概念引入後,全等和平行(平移),相似,垂直,勾股定理等就可以轉化為向量的加(減)法,數乘向量,數量積運算(運算率),從而把圖形的基本性質轉化為向量的運算體系.向量是溝通代數
  • 初中數學與高中數學的知識構成對比
    初中數學與高中數學在知識構成方面,有少數重複的地方,但更多是內容的遞進,加深,拓寬。了解它們之間的聯繫與區別,可以站在更高的角度來整體把握高中數學,學好高中數學。下面我們分模塊進行對比。初中平面幾何:對圖形有一個初步認識,學習了點、線、面、體的概念及表示,三角形全等與相似,平行四邊形包括矩形、正方形、菱形等圖形的判定與性質,軸對稱與中心對稱,位似等內容。高中立體幾何:學習了點、線、面的位置關係及判定方法,空間角,空間距離的計算,還要會用向量的方法來研究空間問題。
  • 高中數學:學會這6大方法,空間向量解立體幾何就是如此簡單!
    高考數學中的立體幾何題,需要考生有足夠的空間想像能力,才能夠將題理解讀明白,然而很多考生在做題的時候,總是會在這道高考題中花費較長的時間,但最後卻又做不正確題,最後就變成了既浪費時間,但又沒有得到分的尷尬處境,那怎麼才可以快速地去解答立體幾何題呢?
  • 高中數學:兩種方法解決平面向量數量積問題,值得收藏
    平面向量是數學中的重要概念。它是溝通代數、幾何和三角函數的有力工具,廣泛應用於生產實踐和科學研究中。平面向量的數量積及其性質是平面向量知識的重點內容,在平面向量中佔有重要地位。利用平面向量的數量積及其性質可以解決有關向量長度,兩向量夾角、垂直、平行等問題。
  • 綜合培優:坐標表示及運算,可助你輕鬆求解向量與解析幾何綜合題
    前面已講過的平面向量與平面幾何綜合可能是最多見的應用題型。除了前面重點講述的三角形有關綜合問題,向量還可與其它平面幾何問題綜合,例如:除了平面幾何,平面向量還可與解析幾何問題綜合。本文要重點歸納和講解這類題型的解題方法。
  • 高考數學7大考點和15種解題方法,列印收藏!
    數學意味著解題,解題就應該對數學思想、數學方法融會貫通,通過對下面這些解題的方法和技巧的介紹,希望對高中生的數學學習能有一定的幫助。(一)函數與導數函數與導數是高考數學中極為重要的一部分,函數的特點和方法貫穿了高中數學的全過程,主要是考函數的性質,如何利用導數作為工具來解答。