1. Box, G. E. P., Hunter, W. G. and Hunter, J. S. (1978). Statistics for Experimenters. John Wiley & Sons, New York.
2. Cochran, W. G., and Cox G. M. (1957). Experimental Designs. John Wiley & Sons, New York.
3. Dempster, A. P., Laird, N. M., and Rubin, D.B. (1977) Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B, 39, 1-38.
4. Ferguson, T. S. (1967). Mathematical Statistics: A Decision Theoretic Approach. Academic Press, Cambridge.
5. Hamada, M. S. and Wu, C. F. J. (1992). Analysis of designed experiments with complex aliasing. Journal of Quality Technology, 24, 130-137.
6. Heckman, J. L. (1999). Causal parameters and policy analysis in economics: A twentieth century retrospective. National Bureau of Economic Research, No. 7333.
7. Imbens, G. W. and Rubin, D. B. (2015). Causal Inference in Statistics, Social, and Biomedical Sciences. Cambridge University Press, Cambridge.
8. Joseph, V. R., Gul, E., and Ba, S. (2015). Maximum projection designs for computer experiments, Biometrika, 102, 371-380.
9. Kiefer, J. and Wolfowitz, J. (1960) The equivalence of two extremum problems. Canadian Journal of Mathematics. 12, 363-6.
10. Pearl, J. (2009). Causality. Cambridge University Press, Cambridge.
11. Qian, P. Z. G. (2009), Nested Latin hypercube designs, Biometrika, 96, 957-970.
12. Qian, P. Z. G. (2012), Sliced Latin hypercube designs, Journal of the American Statistical Association, 107, 393-399.
13. Wu, C. F. (1973). A note on convergence rate of the strong law of large numbers. Bulletin of the Institute of Mathematics, Academia Sinica, 1, 121-124.
14. Wu, C. F. J. (1983). On the convergence properties of the EM algorithm. Annals of Statistics, 11, 95-103.
15. Wu, C. F. J and Hamada, M. S. (2009). Experiments: Planning, Analysis, and Optimization. Second Edition. John Wiley & Sons, New York. (First Edition, 2000).
16. Zangwill, W. I. (1969) Nonlinear programming: A unified approach, Prentice-Hall, New Jersey.
審稿:黃帥
編輯:雷博文
統計之都:專業、人本、正直的中國統計學社區。