研究人員觀察到固體中的溶劑化電子
作者:
小柯機器人發布時間:2020/12/19 15:35:38
美國哥倫比亞大學X.-Y. Zhu團隊在研究中取得進展。他們研究觀察到滷化物鉛鈣鈦中存在鐵電大極化子,即固體中的溶劑化電子。該研究於2020年12月15日發表於《美國化學會志》。
該研究團隊描述了一種新型的極化子,即鐵電大極化子,由Miyata和Zhu在2018年首次提出(Miyata,K.; Zhu,X.-Y. 鐵電體大極化子。《自然—材料學》2018, 17 (5), 379381)。這種類型的極化子允許高效的對電子或空穴的庫侖屏蔽,通過來源於對稱性破壞晶胞的延長的偶極子排列。局部的有序排列反映在滷化物鉛鈣鈦礦(LHPs)類鐵電兆赫茲(THz)介電質響應,並且可能是他們突出的光電錶現的部分原因。儘管鐵電材料中可能沒有遠程鐵電性,一個電子載體可能被定位到並引發納米尺度局部偶極子的有序區域邊界上。
基於能量上有利的區域邊界的已知平面性質,該研究組提出鐵電極化子位於瞬態極性納米域的平面邊界。動態模擬的結果支持這個提議:LHPs中有板狀的瞬態電子或空穴波函數。因此,在三維LHP晶體結構中的Belgian華夫餅形狀鐵電極化子是一個二維上的大極化子和一個垂直方向上的小極化子。鐵電大極化子可能形成於其他晶體狀固體中,表現在動態對稱性打破和極化波動。
研究小組認為,形成鐵電大極化子的能力可以成為有效篩選載流子與其他載流子、帶電缺陷和縱向光頻聲子的散射的一個通用原理,從而有助於增強光電性能。
研究人員表示,溶劑化在化學和生物中起著重要的作用。極化子的形成是溶劑化在固體中的類比,但是庫倫屏蔽(Coulomb screening)的大小通常比溶液中溶劑化效應要弱一個數量級。
附:英文原文
Title: Solvated Electrons in Solids—Ferroelectric Large Polarons in Lead Halide Perovskites
Author: Feifan Wang, Yongping Fu, Mark E. Ziffer, Yanan Dai, Sebastian F. Maehrlein, X.-Y. Zhu
Issue&Volume: December 15, 2020
Abstract: Solvation plays a pivotal role in chemistry and biology. A solid-state analogy of solvation is polaron formation, but the magnitude of Coulomb screening is typically an order of magnitude weaker than that of solvation in aqueous solutions. Here, we describe a new class of polarons, the ferroelectric large polaron, proposed initially by Miyata and Zhu in 2018 (Miyata, K.; Zhu, X.-Y. Ferroelectric Large Polarons. Nat. Mater. 2018, 17 (5), 379381). This type of polaron allows efficient Coulomb screening of an electron or hole by extended ordering of dipoles from symmetry-broken unit cells. The local ordering is reflected in the ferroelectric-like THz dielectric responses of lead halide perovskites (LHPs) and may be partially responsible for their exceptional optoelectronic performances. Despite the likely absence of long-range ferroelectricity in LHPs, a charge carrier may be localized to and/or induce the formation of nanoscale domain boundaries of locally ordered dipoles. Based on the known planar nature of energetically favorable domain boundaries in ferroelectric materials, we propose that a ferroelectric polaron localizes to planar boundaries of transient polar nanodomains. This proposal is supported by dynamic simulations showing sheet-like transient electron or hole wave functions in LHPs. Thus, the Belgian-waffle-shaped ferroelectric polaron in the three-dimensional LHP crystal structure is a large polaron in two dimensions and a small polaron in the perpendicular direction. The ferroelectric large polaron may form in other crystalline solids characterized by dynamic symmetry breaking and polar fluctuations. We suggest that the ability to form ferroelectric large polarons can be a general principle for the efficient screening of charge carriers from scattering with other charge carriers, with charged defects and with longitudinal optical phonons, thus contributing to enhanced optoelectronic properties.
DOI: 10.1021/jacs.0c10943
Source: https://pubs.acs.org/doi/10.1021/jacs.0c10943