克勞修斯在 1854 年的隨筆《關於熱的力學理論的第二基礎定理的一個修正形式》提出了新的物理量,1865 年正式命名為熵,以符號S表示。
克勞修斯從熱機的效率出發,認識到正轉變(功轉變成熱量)可以自發進行,而負轉變(熱量轉變成功)作為正轉變的逆過程卻不能自發進行。負轉變的發生需要同時有一個正轉變伴隨發生,並且正轉變的能量要大於負轉變,這實際是意味著自然界中的正轉變是無法復原的。
由此克勞修斯提出了熱力學第二定律的又一個表述方式,也被稱為熵增原理,那就是:不可逆熱力過程中熵的微增量總是大於零。在自然過程中,一個孤立系統的總混亂度(即「熵」)不會減小。
簡而言之就是孤立系統的熵永不自動減少,熵在可逆過程中不變,在不可逆過程中增加,可以說非常鮮明地指出了不可逆過程的進行方向。
熵增原理是熱力學第二定律的另外一種表述形式,卻又擁有更加深刻的含義,它創造了「熵」這個概念。這個概念在後來被廣泛應用,香農把熵的概念,引申到信道通信的過程中,從而開創了」資訊理論「這門學科,從而宣告了資訊時代的到來。
熵增原理表明,在絕熱條件下,只可能發生dS≥0 的過程,其中dS = 0 表示可逆過程;dS>0表示不可逆過程,dS<0 過程是不可能發生的。但可逆過程畢竟是一個理想過程。因此,在絕熱條件下,一切可能發生的實際過程都使系統的熵增大,直到達到平衡態。
絕熱過程是一個絕熱體系的變化過程,即體系與環境之間無熱量交換的過程。在絕熱過程中,Q = 0 ,有ΔS(絕熱)≥ 0(大於時候不可逆,等於時候可逆) 或 dS(絕熱)≥0 (>0不可逆;=0可逆)
熵增原理最大的意義就是從能量品質的角度規定了能量轉換過程中的方向、條件和限度問題。
熵增原理的出現表示經典力學的可逆性並不適用於所有情況,它只在有普遍的力學原理做保證的情況下才準確,熱運動就是一個不可逆的過程。同時也徹底宣告了永動力的滅亡。因為從海水吸收熱量做功,就是從單一熱源吸取熱量使之完全變成有用功並且不產生其他影響是無法實現的。
而薛丁格就則指出,熵增過程也必然體現在生命體系當中。也就是說,生命體系中的熵也應該是不斷增大的,也只能是從有序向無序發展。但是從某種角度上而言,生命的意義就在於具有抵抗自身熵增的能力,即具有熵減的能力,最典型的表現就是進食行為,我們從食物中汲取了「負熵」來維持生命的有序,即「新陳代謝的實質就是及時全部消除有機體無時無刻不產生的全部負熵」。這裡的有序和無序是描述宏觀態的。
因此,機體是在新陳代謝過程中成功地從周圍環境中不斷地吸收負熵,向周圍環境釋放其生命活動不得不產生的全部正的熵維持生存和進化的。總之,生命體是開放的、不可逆的非熱力學平衡體系。平衡態是無序的,而非平衡態則是有序的根源,這是與熱力學第二定律一致的,也是符合熵增原理的。薛丁格生動地用「生命賴負熵為生」這一句名言概括。
雖然如此,生命的減熵行為卻起不到任何效果,畢竟在浩瀚無垠的宇宙當中,人類等生命簡直是渺小到可以忽略不計。熵增的必然性和不可逆性,註定了生命只能從有序發展為無序,並最終走向老化、死亡。所以熵增原理也被很多人稱為:最令人絕望的物理定律。(依據熵增原理,地球生物都會從從有序走向無序,也就是走向死亡!)
熵增原理適用於很多領域,包括與達爾文的進化論是否矛盾等。
而科學家對於熵增原理最大的爭論是宇宙是否是一個封閉系統,因為熵增作用發揮作用的條件必須是在孤立系統系統中,然後達到平衡熵最大。孤立系統是在熱力學之中,與其他物體既沒有物質交換也沒有能量交換的系統稱為孤立系統 。任何能量或質量都不能進入或者離開一個孤立系統,只能在系統內移動。
而地球就是一個開放系統,熵增原理可以適用於生命,自然也能適用於地球,所以地球上的生物通過從環境攝取低熵物質(有序高分子)向環境釋放高熵物質(無序小分子)來維持自身處於低熵有序狀態。而地球整體的負熵流來自於植物吸收太陽的光流(負熵流)產生低熵物質。使得地球上會出現生物這種有序化的結構。不至於使熵一直處於增大的狀態,
所以科學家就思考,宇宙是否是一個孤立系統,因為宇宙是不存在「外界」的,我們不斷在消耗著能量,且不可逆,熵不斷在增加正在走向它的最大值,因此宇宙一旦到達熱動平衡狀態,就完全死亡。這種情景稱為「熱寂」,這樣的宇宙中再也沒有任何可以維持運動或是生命的能量存在。