以邊緣為中心的網絡神經科學揭示重疊系統級架構
作者:
小柯機器人發布時間:2020/10/22 13:41:02
美國印第安納大學Richard F. Betzel研究組發現,人類大腦皮層的以邊緣為中心的功能網絡表示揭示了重疊的系統級架構。2020年10月19日的《自然-神經科學》雜誌發表了這項成果。
在這項研究中,他們開發了一個以邊緣為中心的網絡模型,該模型生成結構「邊緣時間序列」和「邊緣功能連接」(eFC)。使用網絡分析,他們發現,靜止時,eFC在數據集之間是一致的,並且可以在多個掃描會話中的同會話內重現。他們證明聚類eFC產生的邊緣群體自然將大腦分成重疊的集群,在感覺運動和注意力網絡中的區域表現出最大程度的重疊。
他們表明,eFC通過感官輸入的變化被系統地調控。在未來的工作中,以邊緣為中心的方法可用於識別疾病的新型生物標記,表徵個體變異並繪製高度解析的神經迴路的結構。
據介紹,網絡神經科學依賴於以節點為中心的網絡模型,在該模型中,細胞、種群和區域通過解剖或功能連接相互連結。這種模型無法解釋邊緣之間的相互作用。
附:英文原文
Title: Edge-centric functional network representations of human cerebral cortex reveal overlapping system-level architecture
Author: Joshua Faskowitz, Farnaz Zamani Esfahlani, Youngheun Jo, Olaf Sporns, Richard F. Betzel
Issue&Volume: 2020-10-19
Abstract: Network neuroscience has relied on a node-centric network model in which cells, populations and regions are linked to one another via anatomical or functional connections. This model cannot account for interactions of edges with one another. In this study, we developed an edge-centric network model that generates constructs 『edge time series』 and 『edge functional connectivity』 (eFC). Using network analysis, we show that, at rest, eFC is consistent across datasets and reproducible within the same individual over multiple scan sessions. We demonstrate that clustering eFC yields communities of edges that naturally divide the brain into overlapping clusters, with regions in sensorimotor and attentional networks exhibiting the greatest levels of overlap. We show that eFC is systematically modulated by variation in sensory input. In future work, the edge-centric approach could be useful for identifying novel biomarkers of disease, characterizing individual variation and mapping the architecture of highly resolved neural circuits.
DOI: 10.1038/s41593-020-00719-y
Source: https://www.nature.com/articles/s41593-020-00719-y