2015年7月10日訊 /生物谷BIOON/ --本文亮點:
●本文描述了對hPSC細胞系進行可誘導基因敲除的有效方法
●Dual-sgRNA的靶向作用對於FRT進行雙等位基因精確敲入至關重要
●可誘導的基因敲除在分化任意階段的所有細胞中都可實現
●利用這種方法還可以進行多基因的可誘導性敲除
近日,來自美國威斯康星大學的華人科學家Su-Chun Zhang在國際學術期刊Cell Stem Cell發表了一項最新研究進展,他們利用CRISPR/CAS9技術實現了對人類幹細胞系進行可誘導基因敲除,這一方法的成功對於研究基因在幹細胞及分化不同階段中的作用具有重要推動作用。
對基因表達進行精確的時間調控對於闡明一個基因在生物學系統中的功能至關重要,但到目前為止,在人類多能幹細胞中實現可誘導基因敲除,建立可誘導基因敲除的人類幹細胞系仍存在很大挑戰。
在該項研究中,研究人員結合CRISPR/CAS9介導的基因組編輯和Flp/FRT以及Cre/LoxP系統成功實現建立了可誘導基因敲除的人類多能幹細胞系。研究人員發現dual-sgRNA的靶向作用對於將FRT序列進行精確的雙等位基因敲入非常重要。除此之外,他們還開發了出一種新的策略將一個可調控活性的重組酶表達體系同時導入細胞,移除了藥物抗性基因,利用這種方法可以加快iKO hPSC細胞系的獲得速度。
研究人員通過這種兩步法敲除策略,對人類胚胎幹細胞和誘導多能幹細胞中的SOX2,PAX6,OTX2,AGO2等基因實現了可誘導性基因敲除,建立了相關細胞系。
研究人員相信,利用這種方法建立iKO hPSC細胞系將會改變人們以往對人類細胞中基因功能研究的方式,對於推動幹細胞研究進展具有重要意義。(生物谷Bioon.com)
本文系生物谷原創編譯整理。歡迎轉載!轉載請註明來源並附原文連結。更多資訊請下載生物谷資訊APP。
DOI: http://dx.doi.org/10.1016/j.stem.2015.06.001
Engineering Human Stem Cell Lines with Inducible Gene Knockout using CRISPR/Cas9
Yuejun Chen6correspondenceemail, Jingyuan Cao6, Man Xiong6, Andrew J. Petersen, Yi Dong, Yunlong Tao, Cindy Tzu-Ling Huang, Zhongwei Du, Su-Chun Zhang
Precise temporal control of gene expression or deletion is critical for elucidating gene function in biological systems. However, the establishment of human pluripotent stem cell (hPSC) lines with inducible gene knockout (iKO) remains challenging. We explored building iKO hPSC lines by combining CRISPR/Cas9-mediated genome editing with the Flp/FRT and Cre/LoxP system. We found that "dual-sgRNA targeting" is essential for biallelic knockin of FRT sequences to flank the exon. We further developed a strategy to simultaneously insert an activity-controllable recombinase-expressing cassette and remove the drug-resistance gene, thus speeding up the generation of iKO hPSC lines. This two-step strategy was used to establish human embryonic stem cell (hESC) and induced pluripotent stem cell (iPSC) lines with iKO of SOX2, PAX6,OTX2, and AGO2, genes that exhibit diverse structural layout and temporal expression patterns. The availability of iKO hPSC lines will substantially transform the way we examine gene function in human cells.