基於洛倫茲力的MEMS磁傳感器設計及製作

2020-11-24 OFweek維科網

 0、引言

磁傳感器技術分類(來源:《磁傳感器市場與技術-2017版》)

由於磁性傳感技術不會受到灰塵、汙垢、油脂、振動以及溼度的影響,因此磁傳感器在工業設備和電子儀器中有著廣泛的應用,如磁共振成像、生產的自動控制、流程工業、煤礦勘探、電流測量、缺陷定位和鐵磁材料剩餘應力檢測等方面。為了滿足不同場合的應用,已根據不同傳感原理製備了相應的磁傳感器,常見的有超導量子幹涉裝置(SQUID) 、磁通門磁力計、霍爾效應傳感器、各向異性磁阻(AMR)傳感器、微機電系統(MEMS)磁傳感器。在這些傳感器中,雖然SQUID可探測極小磁感應強度(fT),但裝置需要低溫冷卻,並且易受電磁幹擾,為此需要複雜的外圍設備;磁通門磁力計具有體積大、功耗大、運行範圍小和不能檢測靜態磁場的特性,限制了其應用;霍爾效應傳感器顯示增加靈敏度需靠增加功耗實現;而AMR傳感器則要求沉積磁性材料及自動校正系統,且在幾mT時易出現飽和;由於MEMS技術可以將傳統的磁傳感器小型化,因此基於MEMS的磁傳感器具有體積小、性能高、成本低、功耗低、高靈敏和批量生產等優點,其製備材料以Si為主,消除了磁傳感器製備必須採用特殊磁性材料及其對被測磁場的影響。本文對目前基於MEMS的磁傳感器在製備過程中涉及的主要設計、製作,傳感技術及器件性質進行綜述,並對其未來發展進行展望。

磁傳感器市場(來源:《磁傳感器市場與技術-2017版》)

磁傳感器供應鏈和關鍵廠商(來源:《磁傳感器市場與技術-2017版》)

1、MEMS磁傳感器設計及製作

1.1 MEMS磁傳感器設計

為了獲得高性能的MEMS磁傳感器,首先要根據器件的應用對象對器件進行設計,由此確定器件的結構、使用的材料、應用的工作原理和感應技術等。MEMS設計人員可以根據模擬和建模工具選擇製造傳感器的最佳工藝和材料,並預測MEMS磁傳感器的性能。同時設計人員必須考慮器件製作過程應遵從的材料生長、器件製作、信號調製和感應技術的實現等規則,以避免發生影響傳感器性能的錯誤。在開發商用MEMS傳感器時,必須考慮以下幾點:優化器件結構設計;包裝設計;可靠的材料性能和標準製造工藝;合適的設計和仿真工具;減少電子噪聲和寄生電容;可靠的信號處理系統;可靠的測試。

目前常使用的MEMS設計工具包括MEMSCAP、CoventorWare、IntelliSuite和Sandia Ultra-planar Multi-level MEMS Technology (SUMMiTV) 。這些設計工具具有創建傳感器版圖和檢查設計規則的模塊,並且可以模擬微加工過程的步驟,有利於減少獲得高性能MEMS磁傳感器的時間。

1.2 MEMS磁傳感器製作

通常,MEMS磁場傳感器的製造可以採用體或表面微加工工藝來實現。由於矽具有很好的機械和電學性質而被用來作為其主要加工材料,例如,矽具有最小的機械滯後和接近1GPa的斷裂應力。此外,矽在摻雜磷或硼後其電性能可得到明顯的改善。

體微加工工藝是採用溼法和幹法蝕刻技術,通過材料的各向同性和各向異性蝕刻製備所需要的材料結構。表面微加工工藝是通過在襯底上進行不同材料層的沉積,圖案化和蝕刻實現對MEMS器件的製造。通常,這些層被用作結構和犧牲層。圖1分別給出了通過體加工和表面微加工工藝製備的磁傳感器的SEM。

圖1 體加工和表面加工獲得的SEM

2、傳感技術及MEMS磁傳感器

2.1 傳感技術

可以採用不同的傳感技術製備MEMS磁傳感器,例如壓阻式、電容和光學技術。這些技術能夠將磁場信號分別轉換成電信號或光信號。在電信號檢測中,當電源受限或存在強電磁幹擾時,會影響其應用。而光信號檢測在強電磁場作用及長距離傳輸等條件下應用比電信號檢測更有優勢,因此常應用在極端場合。此外,為了獲得高的解析度和靈敏度,MEMS磁傳感器需要配有低電子噪聲和寄生電容的信號調製系統。

2.2 各類MEMS磁傳感器

V. Kumar等報導通過內部熱壓阻振蕩放大器實現的洛侖茲力諧振MEMS磁力計具有極高的靈敏度。他們採用偏置電流調諧方法,將諧振器的有效品質因子從680提高到1.14x10^6,已證明內部放大係數提高了1620倍。此外,諧振器偏置電流的增加除了改善器件的品質因子外,也使器件的靈敏度提高了2400倍(從0.9 μV·nT^(-1)到 2.107 mV·nT^(-1)) 。在直流偏置電流為7.245 mA時,獲得最大靈敏度為2.107 mV·nT^(-1),本底噪聲為2.8 pT·Hz^(-1/2)。

E. Mehdizadeh等報導了基於洛倫茲力在低電阻率n型SOI襯底上製造的MEMS磁傳感器,其主元件的SEM和電連接分別如圖2所示。該傳感器利用了雙板矽諧振器(厚度10 μm,其中之一具有10 μm x 200 nm的金線),其中間設計的2個窄梁與2個Si板連接;當諧振器在平面振動模式下振蕩時,它會受到周期性的拉伸和壓縮應力,因此呈現壓阻特性。諧諧振器的品質因子在大氣壓下被放大(從1140到16900) 。此外,該傳感器可通過增加諧振器振動幅度來提高其靈敏度。在空氣中,當諧振頻率為2. 6 MHz、品質因子為16900時,獲得傳感器靈敏度為262 mV/T。

圖2 壓阻式MEMS磁傳感器主元件的SEM和電連接

A. L. Herrera-May等製備了具有簡單諧振器和線性電響應的MEMS磁傳感器。它由穿孔板(472μm x 300 μm x 15 μm) 、4 個彎曲梁(18 μm x 15 μm x 15 μm) 、2 個支撐梁(60 μm x 36 μm x 15 μm)和4個p型壓敏電阻構成的惠斯登電橋形成,見圖3。在SOI襯底上採用標準的體微加工工藝製造器件,通過調整激勵電流控制器件的動態範圍使其保持線性電響應,獲得器件品質因子為419. 6、靈敏度為230 mV·T、解析度為2. 5 μT,功耗為12 mW。該傳感器適合應用於非破壞性的磁性測試及鐵磁材料缺陷和腐蝕的檢測。

圖3 MEMS磁傳感器主要部分的頂視圖和4個壓敏電阻組成的惠斯登電橋

Langfelder等製備了具有電容讀出的MEMS磁場傳感器,該傳感器可檢測與諧振結構表面垂直方向(z軸) 的磁場。它由一組固定定子和兩根細梁懸掛的梭子組成,形成2個差分平行板敏感電容器C1和C2,見圖4。具有傳感器共振頻率的梁,在通有電流時與磁場相互作用,從而使2個細梁受到洛倫茲力作用。這個力垂直於磁場和交流電流所構成的平面,導致梁和平行板產生位移,該位移可以通過差分電容的變化來檢測。傳感器在峰值驅動電流為250 μA時的總靈敏度為150 μV·μT^(-1)、理論噪聲為557. 2 μV·Hz^(-1/2)、解析度為520 nT·mA^(-1)·Hz^(-1/2)、品質因子約328、共振頻率為28.3 kHz。

圖4 由平行板、固定定子和2根細梁支撐的梭子形成的MEMS磁場傳感器的示意圖

M. Li等設計了由彎曲梁諧振器(1200 μm x 680 μm x 40 μm)組成的磁場傳感器。彎曲梁諧振器與載有電流的Si梁通過微槓桿機制耦合,諧振器藉助彎曲梁的每一側的30個叉指電極實現靜電驅動和電容感應,獲得傳感器的靈敏度為6687 ppm·mA^(-1)·T^(-1)、品質因子為540、諧振頻率為21.9 kHz (1 ppm = 10^(-6)) 。

Aditi等通過採用SOI和玻璃片的陽極鍵合技術製備了MEMS磁場傳感器。該器件製作工藝具有以下優點:低溫(≤400 ℃) 、可靠、可重複、少的光刻步驟及可控電極間距離的能力。獲得傳感器功耗為0.45 mW,解析度為215 nT·Hz^(-1/2)。

B. Park等設計了由矽諧振器和緊湊型雷射定位系統構成的磁場傳感器,如圖5所示。該系統具有光電探測器和雷射二極體,用於監測電流偏置的反射鏡角位移。諧振器由塗覆有鋁層(2500 μm x 2500 μm x 0.8 μm)的矽膜(3000 μm x 3000 μm x 12 μm)組成,膜由兩根扭轉彈簧(2100 μm x 100 μm x 12 μm)支撐,寬度為30 μm、厚度為0. 8 μm的鋁線沉積在其上。施加的磁場與反向鏡的位移有關,當線圈偏置電流為50 mA時,獲得傳感器的靈敏度為62 mV·μT^(-1)、共振頻率為364 Hz、品質因子為116、53 mHz帶寬的解析度為0.4 nT、本底噪聲為1.78 nT·Hz^(-1/2)。

圖5 具有光讀出的MEMS磁場傳感器和傳感器工作原理圖

M. Lara-Castro等提出在印刷電路板上實現的MEMS磁場傳感器的可攜式信號調製系統,它配有能夠諧磁場傳感器的2個正弦信號發生器。磁場傳感器由共振矽結構(600 μm x 700 μm x 5 μm) 、1個鋁環(1 μm厚)和4個p型壓敏電阻組成的惠斯登電橋構成。2個信號發生器的頻率穩定度為±100 ppm,解析度為1 Hz。該系統中,磁場與電壓有近似線性關係;大氣壓下靈敏度和解析度分別為0.32 V/T和35 nT。

龍亮等採用MEMS磁扭擺和檢測差分電容構成了MEMS磁傳感器。磁扭擺是通過在雙端固定梁的矽薄膜上製作CoNiMnP永磁薄膜獲得,磁傳感器尺寸為3.7 mm x 2.7 mm x 0.5 mm,製備的MEMS磁傳感器具有良好的線性,靈敏度為27.7 fF/mT,最小可分辨磁場大小為36 nT。

3、展望

目前基於Lorentz力的MEMS諧振式磁傳感器主要通過壓阻、光學和電容感測技術來檢測磁場。這些技術可為設計人員提供研製特定應用場合的最佳傳感器方法,例如,壓阻感測適於採用體微加工工藝實現和簡單的信號處理系統。但壓阻感應存在電壓偏移,且電阻易受溫度影響,因此系統中需要提供溫度補償電路。電容感測主要通過表面微加工工藝實現,並將所施加的磁場轉換為電輸出信號。該技術具有很小的溫度依賴性,並允許電子電路與磁傳感器製作在同一晶片上。通常,電容感應的傳感器在大氣壓下具有高的空氣阻尼,為避免它的影響需要對器件進行真空封裝才能提高其靈敏度。利用光學敏感技術製備的傳感器由於具有抗電磁幹擾的特性,因此系統中所需要電路比電容和壓阻敏感技術的少,可在惡劣環境中工作,表面和體微加工工藝均適用於這種傳感技術的優點。然而,這些感測技術都存在著由於焦耳效應而導致傳感器結構發熱的問題,這會產生熱應力和諧振器的位移。為此,需要進一步對器件散熱、諧振器機械可控性及真空封裝研究,以確保獲得更好的MEMS磁傳感器性能。

隨著微納米技術的發展、微機械製造技術的成熟,越來越多的傳感器開始向著集成化、智能化和網絡化方向發展,它們已成為工業生產實現智能製造的重要動力。其智能應用主要在如下幾方面:

(1) 傳感技術。構建傳感器網絡系統,保證對信息進行搜集、整合與傳輸,使工業生產過程得到更有效的控制。

(2) 數控生產。總主線模式通過在線診斷,實現對整體工業生產線的儀表控制。

(3) 自動生產和機械。利用自動化技術開展機械生產,可顯著提高生產效率和質量。

4、結束語

本文綜述了通過體加工和表面加工方法、利用壓阻、電容和光學技術製備的基於洛倫茲力的MEMS磁傳感器,並介紹了各種結構磁傳感器的靈敏度、品質因子、噪聲和探測極限等特性。隨著納米技術、集成化技術以及封裝技術的不斷發展,更多高性能、同時可監測多個物理量的智能傳感器會不斷出現。

相關焦點

  • mems傳感器現狀_mems傳感器製作工藝
    打開APP mems傳感器現狀_mems傳感器製作工藝 網絡整理 發表於 2019-12-25 10:03:09 其主要類型有壓阻式、電容式、力平衡式和諧振式。其中最具有吸引力的是力平衡加速度計,其典型產品是Kuehnel等人在1994年報導的AGXL50型。  國內在微加速度傳感器的研製方面也作了大量的工作,如西安電子科技大學研製的壓阻式微加速度傳感器和清華大學微電子所開發的諧振式微加速度傳感器。
  • 半導體mems企業有哪些_國內十大半導體mems企業排行榜
    國內十大半導體mems企業排行榜——深迪半導體(上海)有限公司   深迪半導體(上海)有限公司是由美國海外留學人員創立的中國首家設計公司研發了擁有完全自主智慧財產權的先進的MEMS工藝和集成技術,專注於為消費電子及汽車電子市場設計和生產低成本、高性價比、低功耗、小尺寸的商用MEMS陀螺儀晶片,並為客戶提供各種全面的應用解決方案和極其優質的服務。
  • 洛倫茲力左手定則圖解,洛倫茲力所有公式
    很多同學在學到帶電粒子在磁場中受到力的作用的時候。我會分析洛倫茲力的方向,也不知道洛倫茲力的公式。這裡教大家洛倫茲力左手定則圖解,學會分析洛倫茲力的方向。列舉了洛倫茲力的所有公式,對於計算洛倫茲力有很大的幫助。
  • 洛倫茲力詳解
    這就是磁場對一個運動電荷的作用力,即洛倫茲力。洛倫茲力的方向與電荷運動方向和磁場方向都垂直,洛倫茲力只改變帶電粒子的運動方向,不改變速度的大小,對電荷不做功。洛倫茲力的方向可用左手定則來判斷:伸開左手,使大拇指與其餘四指垂直,並且都與手掌在同一平面內;讓磁感線垂直穿過手心,若四指指向正電荷運動的方向,則大拇指所指的方向就是正電荷所受的洛倫茲力的方向。若沿該方向運動的是負電荷,則它所受的洛倫茲力的方向與正電荷恰好相反。
  • 高中物理《洛倫茲力的方向》教案
    一、教學目標1.知道什麼是洛倫茲力,會判斷洛倫茲力的方向。2.通過理論分析,提高觀察思考能力,逐步形成抽象思維。3.通過本節課的學習,學生將抽象知識轉化為具體,感受物理世界的奧妙。二、教學重難點【重點】什麼是洛倫茲力。【難點】洛倫茲力的方向。
  • 洛倫茲力做功,勻加速直線運動;洛倫茲力不做功,勻速圓周運動
    如果你高中物理學得好,你肯定知道洛倫茲力永不做功;如果你是高中物理小白,希望你先對前面那句話有印象,今天就把做功的洛倫茲力,與不做功的洛倫茲力分析,受力與對應運動過程:小車和小球帶著2m/s的初速度進入勻強磁場中,由於小球還帶了正電,小球速度方向與磁場方向垂直,根據左手定則,小球受到豎直向上的洛倫茲力作用,並且由F洛=qvB得,此速度下的洛倫茲力為恆力。
  • 難點解析 | 洛倫茲力的應用
    洛倫茲力的方向與電荷運動方向和磁場方向都垂直,洛倫茲力只改變帶電粒子的運動方向,不改變速度的大小
  • 關於洛倫茲力的衝量的計算
    關於洛倫茲力的衝量的計算,我們來看這樣一題:如下圖所示,質量m、帶有+q電荷量的小球處在水平方向的、垂直紙面向裡的大小為B的勻強磁場中,小球從A點無初速度釋放後沿豎直面運動到B點,獲得速度大小v,方向與水平方向成的角為w度,此過程中小球下落高度為
  • memsstar談MEMS刻蝕與沉積工藝的挑戰
    CMOS器件是在矽材料上逐層製作而成的。雖然蝕刻和沉積是標準工藝,但它們主要使用光刻和等離子蝕刻在裸片上創建圖案。另一方面,MEMS是採用體矽加工工藝嵌入到矽中,或通過表面微加工技術在矽的頂部形成。  體矽MEMS的深反應離子刻蝕(DRIE)也稱為Bosch工藝(因為該工藝在20世紀90年代由Bosch開發),是專為MEMS設計的一種最老的工藝解決方案。
  • 安培力與洛倫茲力在生活中的應用
    我們知道,安培力是通電導線在磁場中所受到的力,而洛倫茲力是自由電荷在磁場中移動時所受到的力。洛倫茲力是安培力微觀本質的體現,而安培力是洛倫茲力的宏觀表現。 洛倫茲力的方向與安培力的方向相同。此外二者大小的關係是F安=Nf(N是導體中定向運動的電荷數,f是洛倫茲力)。在我們的生活中,安培力與洛倫茲力在許多領域都有所應用。
  • 高中物理:洛倫茲力重難點解析
    學習磁場對運動電荷的作用力——洛倫茲力,應從洛倫茲力的方向如何確定及洛倫茲力和安培力、電場力的區別與聯繫這兩個方面加以理解。
  • 高中物理 | 3.5洛倫茲力詳解
    這就是磁場對一個運動電荷的作用力,即洛倫茲力。洛倫茲力的方向與電荷運動方向和磁場方向都垂直,洛倫茲力只改變帶電粒子的運動方向,不改變速度的大小,對電荷不做功。洛倫茲力的方向可用左手定則來判斷:伸開左手,使大拇指與其餘四指垂直,並且都與手掌在同一平面內;讓磁感線垂直穿過手心,若四指指向正電荷運動的方向,則大拇指所指的方向就是正電荷所受的洛倫茲力的方向。若沿該方向運動的是負電荷,則它所受的洛倫茲力的方向與正電荷恰好相反。
  • 物理基礎要點:磁場、洛倫茲力
    (3)磁場中某位置的磁感應強度的大小及方向是客觀存在的,與放入的電流強度I的大小、導線的長短L的大小無關,與電流受到的力也無關,即使不放入載流導體,它的磁感應強度也照樣存在,因此不能說B與F成正比,或B與IL成反比.
  • 隧穿磁阻技術,磁傳感器的領軍者
    同霍爾效應一樣,磁阻效應也是由於載流子在磁場中受到洛倫茲力而產生的。從一般磁阻開始,磁阻發展經歷了常磁阻(OMR),異向磁阻(AMR),巨磁阻(GMR),隧穿磁阻(TMR)的過程。 也伴隨著近年來磁阻效應的廣泛應用,磁阻器件在工業、交通、儀器儀表、醫療器械、探礦等領域得到深度器重。
  • 一文讀懂磁傳感器
    我們偉大中華祖先的四大發明之一——指南針,可謂是無人不知啊,對於現代來講,它可算得上是磁傳感器的鼻祖了。隨著持續的技術研發,各種磁傳感器誕生,並擁有更優異的性能、更高的可靠性。霍爾效應(Hall Effect)傳感器1879年,美國物理學家霍爾在研究金屬導電機制時發現了霍爾效應。但因金屬的霍爾效應很弱而一直沒有實際應用案例,直到發現半導體的霍爾效應比金屬強很多,利用這種現象才製作了霍爾元件。
  • 高中物理洛倫茲力做功的特點及衝量的應用
    洛倫茲力每時每刻都與速度方向垂直,所以洛倫茲力對帶電粒子不做功,它只起到改變帶粒子運動方向的作用,不改變粒子的速率,也不改變粒子的動能。如圖1,一帶電粒子電量為q,在磁感應強度為B的勻強磁場中做勻速圓周運動,速度為v。某時刻v與x軸的夾角為,則它受到的洛倫茲力F與y軸的夾角也為。
  • 安培力與洛倫茲力在生活中的應用-科普中國
    我們知道,安培力是通電導線在磁場中所受到的力,而洛倫茲力是自由電荷在磁場中移動時所受到的力。洛倫茲力是安培力微觀本質的體現,而安培力是洛倫茲力的宏觀表現。洛倫茲力的方向與安培力的方向相同。此外二者大小的關係是F安=Nf(N是導體中定向運動的電荷數,f是洛倫茲力)。在我們的生活中,安培力與洛倫茲力在許多領域都有所應用。
  • 關於TMR磁傳感器技術的優勢和應用方向
    同霍爾效應一樣,磁阻效應也是由於載流子在磁場中受到洛倫茲力而產生的。從一般磁阻開始,磁阻發展經歷了常磁阻(OMR),異向磁阻(AMR),巨磁阻(GMR),隧穿磁阻(TMR)的過程。 也伴隨著近年來磁阻效應的廣泛應用,磁阻器件在工業、交通、儀器儀表、醫療器械、探礦等領域得到深度器重。
  • 洛倫茲力到底是一種什麼力?電子自旋磁矩或許能夠給出答案
    洛倫茲力到底是一種什麼力?電子自旋磁矩或許能夠給出答案!洛倫茲運動就是指運動電荷在磁場中受洛倫茲力作用而產生的一種曲線運動;但洛倫茲力及其公式不是從物理理論中推導出來的,而是由多次重複實驗所得的結論,它只能被當作一個基本公理來應用,因為,直到現代人們還不清楚洛倫茲運動形成的真正物理機制,更不知道洛倫茲力到底是一種什麼力?
  • 一文讀懂磁傳感器(必須收藏)
    隨著持續的技術研發,各種磁傳感器誕生,並擁有更優異的性能、更高的可靠性。但因金屬的霍爾效應很弱而一直沒有實際應用案例,直到發現半導體的霍爾效應比金屬強很多,利用這種現象才製作了霍爾元件。 在半導體薄膜兩端通以控制電流 I,並在薄膜的垂直方向施加磁感應強度為B的勻強磁場,半導體中的電子與空穴受到不同方向的洛倫茲力而在不同方向上聚集,在聚集起來的電子與空穴之間會產生電場,電場強度與洛倫茲力產生平衡之後,不再聚集,這個現象叫做霍爾效應。