生命科學學院蘇曉東實驗室揭示茉莉酸信號通路中轉錄因子調控新機制

2021-01-10 北京大學新聞網

2017年5月16日,北京大學生命科學學院蘇曉東實驗室在Cell子刊Cell Reports雜誌上發表題為「Crystal Structure of tetrameric Arabidopsis MYC2 reveals the mechanism of enhanced interaction with DNA」的研究論文,文章解析了植物中首個basic Helix-loop-Helix(bHLH)家族的轉錄因子MYC2與DNA複合物晶體結構,發現轉錄因子的多聚化調控茉莉酸信號通路基因表達的新模式。

茉莉酸是重要的植物激素,在幫助植物抵抗外源環境壓力,以及調控植物自身生長發育方面起著至關重要的作用。該信號通路中的核心轉錄因子是一類屬於bHLH家族的蛋白,包括MYC2、MYC3等。一直以來人們都認為該信號通路中轉錄因子的調控能力主要和其自身在植物中的表達量相關,其結構細節及聚集狀態從未被研究過。

蘇曉東實驗室通過結構生物學手段,解析了MYC2蛋白的bHLH結構域和DNA的複合體晶體結構,一方面揭示了MYC2以四聚化方式結合G-box DNA;另一方面,結合各種生化及生物物理方法,發現MYC2和MYC3的蛋白序列雖然非常相似,但是MYC2形成四聚體而MYC3卻以二聚體形式存在,進而發現四聚化能夠極大地增加MYC2的DNA的結合能力,以及激活基因表達的能力,還進一步證明了四聚化的MYC2可以介導DNA looping的形成。該項工作揭示了茉莉酸信號通路中轉錄因子調控的新機制,進一步完善了對該信號通路的研究。

圖中顯示比較了同源四聚體的MYC2及同源二聚體MYC3在結合啟動子區域具有多個G-box位點的異同。四聚體MYC2可以結合兩個位點並且彎折DNA使MYC2的結合更加穩定從而加強轉錄激活,而二聚體的MYC3則只能結合一個G-box位點,相對具有較弱的激活作用。

該課題組博士研究生廉騰飛、徐永萍為論文的共同第一作者,蘇曉東教授為該論文的通訊作者,該項研究得到國家自然科學基金的資助。

編輯:江南


相關焦點

  • 綜述|茉莉酸信號通路轉錄調控機理
    茉莉酸、生長素、赤黴素、水楊酸等多種植物激素的受體都定位於細胞核內,且與轉錄調控緊密偶聯。因此,深入解析激素信號介導的轉錄調控網絡對於人們全面理解植物激素信號的動態響應過程及作用機理具有重要意義。轉錄中介體(Mediator)是真核生物中高度保守的由多個亞基組成的蛋白複合體,在轉錄調控的多個層面發揮調控作用,被稱為真核生物基因轉錄的「中央控制器」。
  • 轉錄中介體複合物調控茉莉酸信號途徑
    在基因轉錄過程中,轉錄中介體分別與基因特異的轉錄因子和RNA聚合酶II相互作用,廣泛參與二者之間的信息傳遞,被稱為真核生物基因轉錄的中央控制器。在植物激素信號轉導研究中,人們主要關注激素特異的轉錄因子的作用,但對於轉錄中介體的功能及作用機理所知甚少。 中科院遺傳與發育生物學研究所李傳友實驗室最近的研究揭示了擬南芥轉錄中介體複合物在茉莉酸信號途徑中的功能及作用機理。
  • 茉莉酸信號通路轉錄調控機理研究獲進展
    激素在植物生長發育和對環境適應性的調控中發揮重要作用。茉莉酸、生長素、赤黴素、水楊酸等植物激素的受體定位於細胞核內,與轉錄調控緊密偶聯。因此,解析激素信號介導的轉錄調控網絡對於理解植物激素信號的動態響應過程及作用機理具有重要意義。
  • Plant Cell:李傳友等發現轉錄中介體複合物調控茉莉酸信號途徑新機制
    轉錄中介體 (Mediator)是由多個在進化上高度保守的亞基組成的蛋白複合物。在基因轉錄過程中,轉錄中介體分別與基因特異的轉錄因子和RNA聚合酶II相互作用, 廣泛參與二者之間的信息傳遞,被稱為真核生物基因轉錄的中央控制器。在植物激素信號轉導研究中,人們主要關注激素特異的轉錄因子的作用,但對於轉錄中介體的功能及作用機理所知甚少。
  • 遺傳發育所茉莉酸信號通路轉錄調控機理研究獲進展
    激素在植物生長發育和對環境適應性的調控中發揮重要作用。茉莉酸、生長素、赤黴素、水楊酸等植物激素的受體定位於細胞核內,與轉錄調控緊密偶聯。因此,解析激素信號介導的轉錄調控網絡對於理解植物激素信號的動態響應過程及作用機理具有重要意義。
  • 遺傳發育所茉莉酸信號通路轉錄調控機理研究獲進展
    激素在植物生長發育和對環境適應性的調控中發揮重要作用。茉莉酸、生長素、赤黴素、水楊酸等植物激素的受體定位於細胞核內,與轉錄調控緊密偶聯。因此,解析激素信號介導的轉錄調控網絡對於理解植物激素信號的動態響應過程及作用機理具有重要意義。
  • Plant Cell | 中科院版納植物園研究團隊揭示茉莉酸信號調控根毛...
    根毛是根表皮細胞特化形成的一種單細胞管狀突出物,它們能有效增加根的表面積,促進植物對水分和養分的吸收,從而在植物適應環境的過程中發揮重要的作用。根毛的生長發育過程受到多種環境因子和內源信號的影響。前人研究發現茉莉酸可以影響植物根毛的發育過程,然而相應的分子調控機理及信號傳導通路仍不清晰。
  • 科技創新進展:揭示脫落酸與茉莉酸協同調控水稻種子萌發的新機制
    該研究首次揭示了SAPK10-bZIP72-AOC通路介導激素脫落酸(ABA)和茉莉酸(JA)協同抑制水稻種子萌發的分子機制。  水稻種子的萌發與稻米品質和穗發芽抗性直接相關。我國南方高溫多雨容易造成穗提早發芽現象, 最終導致產量和品質的下降。深入解析種子萌發的遺傳特性和分子機制,對於提高水稻的穗發芽抗性具有重要的意義。
  • 南開大學團隊揭示B肝病毒轉錄複製調控新機制
    南開新聞網訊(通訊員 張瑋光 記者 吳軍輝)記者獲悉,長期從事B肝、肝癌研究的南開大學生命科學學院張曉東教授團隊在B肝病毒轉錄、複製調控機制方面有了新突破。日前,他們在生物醫學領域學術期刊《Theranostics》上發文,首次報導了「組蛋白乙醯轉移酶HAT1信號通路促進HBV cccDNA(B肝病毒共價環狀閉合DNA)微小染色體組裝和表觀遺傳修飾」的新機制,為臨床清除HBVcccDNA和治療B肝提供了新的潛在靶點。  B肝病毒(Hepatitis B virus, HBV)的慢性感染可導致肝炎、肝硬變和肝癌。
  • 【科技前沿】張宏團隊揭示自噬調控新機制:IPMK通過抑制轉錄因子...
    近年研究發現,轉錄因子、轉錄中介體Mediator和RNA聚合酶等轉錄組份通過液-液相分離形成轉錄凝聚體(transcriptional condensates),激活下遊基因轉錄【1-3】。但是當沒有受到轉錄信號刺激時,這些液-液相分離的轉錄因子與其他轉錄組分之間的相互作用是如何被調控的尚未被闡明。
  • Nature Plants|多組學數據系統分析擬南芥茉莉酸信號通路
    雖然此前已有人已鑑定到茉莉酸的體內受體及MYC2、MYC3等轉錄因子的調控機制,但植物JA整體的響應網絡以及對新的通路組分鑑定仍需系統性、全局性的研究。以上結果表明MYC2和MYC3通過激活大量轉錄因子網絡來參與JA響應並調控JA與其它植物激素信號通路的信息交流。
  • 生命科學學院宋豔研究組揭示轉錄因子通過相分離驅使神經元終末...
    該文揭示了果蠅發育過程中,一個轉錄因子通過液-液相分離「植入」神經前體細胞有絲分裂期染色體,通過促進H3K9me3+異染色質凝聚確保神經元終末分化的新現象和新機制。因此,這項研究所揭示的新現象和新機理可能代表了轉錄因子通過染色體植入驅使異染色質凝縮和細胞終末分化的普適規律。液-液相分離作為細胞內的一種自組織方式,為我們理解許多生物學現象提供了嶄新的視角。然而,在生理條件下相分離是否真正參與調控重要的生物學過程還有待更確鑿有力的證據 [7,8]。
  • 茉莉酸協同脫落酸信號延遲種子萌發的分子機制被雲南大學揭示
    ,受到植物體內多種信號物質和外界環境因子的精細調控。前人研究表明,茉莉酸(Jasmonate, JA)是植物體內一類十分重要的生長調節物質,參與調控植物的生長發育及對環境因子的響應,如在一些作物及擬南芥中抑制種子萌發過程,然而相應的分子調控機理及信號傳導通路仍不清楚。
  • 轉錄因子Oct4與Erk/MAPK信號通路在胚胎幹細胞分化中的調控機制
    近日,美國《國家科學院院刊》(PNAS)發表了中科院上海生命科學研究院/上海交通大學醫學院健康科學研究所幹細胞生物學重點實驗室金穎課題組的研究論文Stk40 links the pluripotency factor Oct4 to the Erk/MAPK pathway and controls extraembryonic endoderm
  • 研究發現Hippo通路成員MOB1調控茉莉酸及植物發育的機制
    Hippo信號通路在調控動物細胞分裂、器官大小和腫瘤發生方面起重要作用,是當前動物和醫學領域的研究熱點,但是植物中相關研究還比較少。MOB1是該通路的核心成員,在酵母、動物和植物中高度保守。中國科學院植物研究所程佑發研究組前期發現擬南芥MOB1A在生長素介導的植物生長發育過程中起重要作用(Cui et al., 2016, PLoS Genetics)。為了進一步揭示擬南芥MOB1基因家族的作用,研究人員採用了遺傳學、生化、細胞生物學和組學等手段,發現MOB1A與MOB1B在體內相互作用,具有相似的表達模式和蛋白亞細胞定位。
  • 重慶大學李正國團隊揭示番茄果實成熟轉錄調控新機制
    The Plant Journal 重慶大學李正國團隊揭示番茄果實成熟轉錄調控新機制責編 | 奕梵通過對番茄果實成熟突變體的研究,現已鑑定出了多個調控果實成熟的基因。乙烯作為一種重要的植物激素,在呼吸躍變型果實(番茄、蘋果、香蕉等)的成熟過程中發揮關鍵調控作用。目前報導較多的果實成熟調控基因多為正調控因子,且很多基因的作用機制仍不清楚。
  • 李傳友研究組解析茉莉酸調控植物免疫的轉錄重編程
    茉莉酸是來源於不飽和脂肪酸的植物免疫激素。其生物合成途徑和化學結構與高等動物中的免疫激素前列腺素有極高的類似性。對應於機械傷害、咀嚼式昆蟲和死體營養型病原菌的侵害,植物激活茉莉酸信號通路,啟動並級聯放大茉莉酸介導的轉錄重編程,從而產生有效的防禦反應。但目前對茉莉酸激活植物免疫轉錄重編程的機理所知甚少。 中國科學院遺傳與發育生物學研究所李傳友研究組長期以番茄為模式研究茉莉酸調控植物免疫的分子機理。
  • The Plant Cell :解析茉莉酸調控植物免疫的轉錄重編程機理
    茉莉酸是來源於不飽和脂肪酸的植物免疫激素,其生物合成途徑和化學結構與高等動物中的免疫激素前列腺素有極高的類似性。在受到機械傷害、咀嚼式昆蟲和死體營養型病原菌的侵害時,植物激活茉莉酸信號通路,啟動並級聯放大茉莉酸介導的轉錄重編程,從而產生有效的防禦反應。但目前對茉莉酸激活植物免疫轉錄重編程的機理所知甚少。中國科學院遺傳與發育生物學研究所李傳友研究組長期以番茄為模式植物,研究茉莉酸調控植物免疫的分子機理。
  • 植物激素茉莉酸的信號傳導機理研究取得進展
    根毛是根表皮細胞特化形成的一種單細胞管狀突出物,它們能有效增加根的表面積,促進植物對水分和養分的吸收,從而在植物適應環境的過程中發揮重要作用。根毛的生長發育過程受到多種環境因子和內源信號的影響。前人研究發現茉莉酸可以影響植物根毛的發育過程,然而相應的分子調控機理及信號傳導通路仍不清晰。
  • 浙江大學生命科學學院易文教授等PNAS發文:O-連接乙醯葡糖胺糖基化修飾調控細胞中蛋白翻譯的新機制
    美國科學院院刊PNAS在4月2日在線發表了浙江大學生命科學學院易文教授實驗室的最新研究成果「O-GlcNAcylation of Core Components