【科技前沿】張宏團隊揭示自噬調控新機制:IPMK通過抑制轉錄因子...

2021-01-12 澎湃新聞

蛋白質液-液相分離(Liquid-Liquid Phase Separation, LLPS)介導細胞內多種無膜細胞器或大分子凝聚體的形成。相分離形成的凝聚體起到分隔細胞組分的作用,從而在空間上保證了不同的細胞功能高效、有序的進行。近年研究發現,轉錄因子、轉錄中介體Mediator和RNA聚合酶等轉錄組份通過液-液相分離形成轉錄凝聚體(transcriptional condensates),激活下遊基因轉錄【1-3】。但是當沒有受到轉錄信號刺激時,這些液-液相分離的轉錄因子與其他轉錄組分之間的相互作用是如何被調控的尚未被闡明。

細胞自噬(autophagy)是一種在真核生物中高度保守的由溶酶體介導的降解途徑,對細胞應對各種應激條件以及維持穩態平衡至關重要。自噬通過形成雙層膜的自噬體包裹部分細胞質,如受損傷的細胞器或錯誤摺疊的蛋白質等,並運輸至溶酶體進行降解。自噬活性異常與癌症、神經退行性疾病、免疫系統疾病等多種人類疾病的發生發展相關【4-6】。

2020年12月7日,中國科學院生物物理研究所張宏課題組在Developmental Cell雜誌在線發表了題為Inositol polyphosphate multikinase inhibits liquid-liquid phase separation of TFEB to negatively regulate autophagy activity 的研究論文,該文揭示了肌醇多磷酸激酶IPMK通過抑制轉錄因子TFEB的液-液相分離調控自噬活性和溶酶體產生的機制。

為研究自噬活性的調控機制,張宏實驗室建立了秀麗隱杆線蟲(C. elegans)為研究多細胞生物自噬活性調控的模型。通過遺傳篩選,作者發現線蟲ipmk-1 (bp1075)突變體中自噬活性顯著升高。ipmk-1編碼線蟲中的肌醇多磷酸激酶IPMK。IPMK主要定位於細胞核中,在胞質中也有少量分布,其已知的功能主要是催化產生IP4、IP5等高磷酸肌醇和三磷酸磷脂醯肌醇(PIP3)。在哺乳動物細胞中敲除IPMK也顯著提高自噬活性,並促進溶酶體產生和功能(圖1)。IPMK對於自噬活性和溶酶體產生的調控依賴於IPMK的細胞核定位而不依賴於其酶活性。

圖1. 敲除IPMK提升自噬活性並促進溶酶體的產生和功能

進一步研究發現,IPMK對於自噬活性和溶酶體產生的調控依賴於轉錄因子TFEB。IPMK缺失可以特異性地提高TFEB的轉錄活性,促進TFEB下遊基因的轉錄,進而促進溶酶體的產生和功能,提升自噬活性。敲減TFEB能夠抑制IPMK敲除細胞中異常增強的自噬活性和增多的溶酶體。TFEB是調控自噬-溶酶體通路相關基因轉錄的關鍵轉錄因子。目前已知的多種信號通路通過影響TFEB的磷酸化水平和入核轉運來調控其轉錄活性。但該研究發現敲除IPMK並不影響TFEB的磷酸化水平及其在胞質與核之間的運輸(圖2)。那麼IPMK如何影響TFEB的功能呢?

圖2. IPMK缺失特異性地提高了TFEB的轉錄活性而不影響其入核轉運

研究發現核中的TFEB通過形成具有液態特徵的點狀凝聚體結構參與轉錄過程。TFEB蛋白能夠在體外發生液-液相分離。IPMK可以與TFEB直接作用抑制TFEB的液-液相分離,也可使形成的TFEB蛋白凝聚體解聚,這種抑制效果隨著IPMK濃度的升高而增強。在IPMK缺失細胞中,核內的TFEB凝聚體結構顯著增多,與轉錄中介體Mediator以及下遊基因LAMP1 mRNA共定位的TFEB凝聚體也明顯增多(圖3)。這些結果提示IPMK在核中起到TFEB分子伴侶的作用,通過調節TFEB凝聚體的形成調控下遊基因的轉錄水平。

圖3. IPMK調控具轉錄活性的TFEB凝聚體的形成

這項研究揭示了一種自噬活性調控的新機制,細胞核內的IPMK通過與TFEB直接相互作用抑制TFEB凝聚體的組裝,從而調控自噬溶酶體通路相關基因的轉錄。轉錄組分在細胞核內形成大量的凝聚體結構,這項成果也為研究轉錄凝聚體的調控機制提供了新思路。

圖4. IPMK通過抑制轉錄因子TFEB的液-液相分離而調控自噬活性

原文連結:

http://doi.org/10.1016/i.devcel.2020.10.010

參考文獻

1. Banani, S.F., Lee, H.O., Hyman, A.A., and Rosen, M.K. (2017). Biomolecular condensates: organizers of cellular biochemistry. Nature Reviews Molecular Cell Biology 18, 285-298.

2. Boija, A., Klein, I.A., Sabari, B.R., Dall'Agnese, A., Coffey, E.L., Zamudio, A.V., Li, C.H., Shrinivas, K., Manteiga, J.C., Hannett, N.M., et al. (2018). Transcription Factors Activate Genes through the Phase-Separation Capacity of Their Activation Domains. Cell 175, 1842-1855.e1816.

3. Plys, A.J., and Kingston, R.E. (2018). Dynamic condensates activate transcription. Science 361, 329-330.

4. Mizushima, N., Yoshimori, T., and Ohsumi, Y. (2011). The Role of Atg Proteins in Autophagosome Formation. Annual Review of Cell and Developmental Biology 27, 107-132.

5. Zhao, Y.G., and Zhang, H. (2019). Autophagosome maturation: An epic journey from the ER to lysosomes. The Journal of Cell Biology 218, 757-770.

6. Schneider, J.L., and Cuervo, A.M. (2014). Autophagy and human disease: emerging themes. Current Opinion in Genetics & Development 26, 16-23.

本文轉載自公眾號「BioArt」(BioGossip)

中國生物物理學會官方訂閱號,為BSC會員及生物物理領域專業人士服務。

投稿及授權請聯繫:bscoffice@bsc.org.cn。

微信號:BSC-1979

喜歡此內容的人還喜歡

原標題:《【科技前沿】張宏團隊揭示自噬調控新機制:IPMK通過抑制轉錄因子TFEB的液-液相分離而調控自噬活性》

閱讀原文

相關焦點

  • ...肌醇多磷酸激酶IPMK抑制轉錄因子TFEB的液-液相分離調控自噬...
    regulate autophagy activity的研究論文,該文揭示了肌醇多磷酸激酶IPMK通過調節轉錄因子TFEB的液-液相分離,進而調控自噬活性和溶酶體產生的機制。科研人員建立了秀麗隱杆線蟲(C. elegans)為研究多細胞生物自噬活性調控的遺傳模型,並通過篩選發現ipmk-1突變顯著提高機體的自噬活性。ipmk-1編碼肌醇多磷酸激酶IPMK的同源物。在哺乳動物細胞中敲除IPMK也顯著提高自噬活性,並促進溶酶體的產生和功能。IPMK調控自噬-溶酶體通路的活性依賴於IPMK的細胞核定位,但並不依賴其酶活性。
  • 生物物理所揭示肌醇多磷酸激酶IPMK抑制轉錄因子TFEB的液-液相分離...
    regulate autophagy activity的研究論文,該文揭示了肌醇多磷酸激酶IPMK通過調節轉錄因子TFEB的液-液相分離,進而調控自噬活性和溶酶體產生的機制。科研人員建立了秀麗隱杆線蟲(C. elegans)為研究多細胞生物自噬活性調控的遺傳模型,並通過篩選發現ipmk-1突變顯著提高機體的自噬活性。ipmk-1編碼肌醇多磷酸激酶IPMK的同源物。在哺乳動物細胞中敲除IPMK也顯著提高自噬活性,並促進溶酶體的產生和功能。IPMK調控自噬-溶酶體通路的活性依賴於IPMK的細胞核定位,但並不依賴其酶活性。
  • 【科技前沿】張宏團隊揭示SARS-CoV-2抑制自噬溶酶體形成的機制
    而在MHV,MERS-CoV和SARS-CoV等冠狀病毒的侵染過程中,其複製和轉錄複合物(RTCs)能夠錨定在細胞內的雙層膜囊泡(DMV)上行使功能,而複製形成的病毒RNA產物被儲存於DMV中【10,11】。這些病毒RNA能夠通過跨雙膜的孔道被運輸到細胞質中進行翻譯或病毒組裝【12】。研究表明冠狀病毒侵染細胞中,DMV的形成並不需要自噬機器的參與。
  • 中山大學崔雋/黃軍就聯合團隊揭示USP19通過調控巨噬細胞極化抑制...
    在應對不同的組織微環境時,巨噬細胞通過極化為不同的表型(M1和M2型巨噬細胞)發揮功能:M1型巨噬細胞參與促炎症因子的表達,在宿主防禦細菌和病毒感染方面發揮重要作用;而M2型巨噬細胞主要參與抗炎反應,促進組織重構和傷口癒合。過度激活的M1型巨噬細胞促進炎症因子風暴,加劇病理損傷;而紊亂的M2型巨噬細胞則會促進腫瘤的發生和轉移。因此,精確調控巨噬細胞的極化對保持機體的健康具有重大意義。
  • 重慶大學李正國團隊揭示番茄果實成熟轉錄調控新機制
    The Plant Journal 重慶大學李正國團隊揭示番茄果實成熟轉錄調控新機制責編 | 奕梵通過對番茄果實成熟突變體的研究,現已鑑定出了多個調控果實成熟的基因。乙烯作為一種重要的植物激素,在呼吸躍變型果實(番茄、蘋果、香蕉等)的成熟過程中發揮關鍵調控作用。目前報導較多的果實成熟調控基因多為正調控因子,且很多基因的作用機制仍不清楚。
  • 山東農業大學李廈團隊揭示根分生區發育轉錄調控新機制
    Plant Cell | 山東農業大學李廈團隊揭示根分生區發育轉錄調控新機制責編 | 逸雲根尖分生區幹細胞的不斷分裂分化保證根的持續生長PLT1可以在細胞間移動,產生PLT1蛋白的濃度梯度,高濃度的PLT1抑制細胞分裂,維持根端幹細胞的穩態;中間濃度的PLT1促進細胞分裂;低濃度的PLT1促進細胞分化。儘管PLT1濃度梯度的建立已較為清楚,但是其上遊轉錄調控機制以及PLT1濃度梯度的維持機制尚不清楚。
  • 崔雋團隊揭示細胞自噬調控非經典NF-kB通路
    非經典NF-kB信號通路中的轉錄因子p100,在靜息狀態下能夠抑制該通路。而在該通路被激活後,p100作為前體會通過蛋白酶體途徑加工成為具有轉錄活性的p52,進而激活非經典NF-kB途徑。因此,p52/p100的蛋白穩定對非經典NF-kB信號通路的激活尤為關鍵。
  • 南開大學團隊揭示B肝病毒轉錄複製調控新機制
    南開新聞網訊(通訊員 張瑋光 記者 吳軍輝)記者獲悉,長期從事B肝、肝癌研究的南開大學生命科學學院張曉東教授團隊在B肝病毒轉錄、複製調控機制方面有了新突破。類似於宿主細胞核小體,HBV cccDNA通過結合HBx和HBc等病毒蛋白以及組蛋白3/4等宿主蛋白,在肝細胞核內形成HBV cccDNA微小染色體,這種HBV cccDNA微小染色體的結構使HBV cccDNA更加穩定和完整,從而實現B肝病毒的轉錄和複製。
  • 【科技前沿】張宏、張明傑、朱學良等多位專家聯合撰寫「生物學中...
    中國科學家在這一前沿領域取得了諸多重要研究成果。該綜述全文33頁,2萬8千餘字,全面系統地總結了國內科研團隊探究LLPS調控多種生理、病理過程的主要進展,併兼顧了國際上該方向的最新發現。文章開篇介紹了LLPS的物理原理,包括LLPS的基本原則、多價相互作用介導生物大分子LLPS的分子機制、以及生物大分子LLPS的動態調節。
  • 北京基因組所揭示去泛素化酶USP33調控線粒體自噬新機制
    北京基因組所揭示去泛素化酶USP33調控線粒體自噬新機制 2019-08-30 北京基因組研究所   該研究揭示了去泛素化酶USP33在調控線粒體自噬方面的新機制,解析了泛素化和去泛素化動態平衡對線粒體自穩態維持的關鍵作用,相關研究為闡明線粒體自噬發生的分子機制和生物學功能提供了重要依據,為相關神經性疾病的防治提供了新的靶點。
  • 【科技前沿】王福俤/閔軍霞/謝黎煒團隊合作揭示轉鐵蛋白受體調控...
    該研究表明轉鐵蛋白受體(Transferrin Receptor 1, Tfr1)通過特異機制調控棕色/米色脂肪細胞功能和發育。在米色脂肪形成過程中,活化的缺氧誘導因子HIF1α通過轉錄調控Tfr1表達促進鐵吸收從而維持線粒體功能;在棕色脂肪發育過程中,Tfr1以非鐵依賴的方式調控棕色脂肪與白色脂肪、肌細胞的轉分化。
  • 研究揭示去泛素化酶USP33調控線粒體自噬新機制
    PINK1-Parkin介導的線粒體自噬在線粒體質量控制過程中發揮著關鍵作用,其調控異常與人類神經退行性疾病發生相關已有研究表明Parkin蛋白泛素化和去泛素化修飾參與線粒體自噬調控過程,但Parkin蛋白的去泛素化酶及其調控線粒體自噬的分子機制尚不清楚。中國科學院北京基因組研究所趙永良研究組發現,去泛素化酶USP33通過去除Parkin蛋白Lys435位點的K63泛素鏈來調控線粒體自噬的發生,進而調控神經毒性劑MPTP誘導的神經腫瘤細胞的凋亡。
  • 張雅鷗團隊在《自噬》發文揭示調控細胞自噬的microRNA和天然小...
    張雅鷗團隊在《自噬》發文揭示調控細胞自噬的microRNA和天然小分子化合物   清華新聞網12月27日電(通訊員 萬剛)清華大學深圳研究生院生命與健康學部健康科學與技術重點實驗室張雅鷗教授和許乃寒副教授團隊近期在《自噬》(Autophagy
  • ...眼科範先群團隊和交大醫學院鍾清團隊揭示葡萄膜黑色素瘤自噬新...
    該研究解析了lncRNA ZNNT1通過直接調控自噬關鍵基因ATG12,誘導腫瘤細胞自噬,抑制葡萄膜黑色素瘤(Uveal Melanoma ,UM)發生發展的新機制。  該研究首次在UM中發現了一種與自噬調控相關的長鏈非編碼RNA ZNNT1(lncRNA ZNNT1)。
  • 中國科學家揭示肥胖性心肌病線粒體自噬調控新機制
    線粒體自噬蛋白FUNDC1是一種調控線粒體自噬的關鍵受體,既往研究表明FUNDC1是線粒體質量控制的關鍵線粒體膜蛋白。其功能改變與多種心血管疾病(心肌梗死、缺血性心肌病)密切相關。近日,復旦大學中山醫院張英梅教授、任駿教授團隊在Science Advances發表了題為「FUNDC1 Interacts with FBXL2 to Govern Mitochondrial Integrity and Cardiac Function through an IP3R3-Dependent Manner in Obesity」的研究,報導了線粒體自噬蛋白FUNDC1在調節肥胖性心肌病的新機制
  • 植物株型發育新機制 揭示如何調控基因表達
    研究發現黃瓜卷鬚發育的身份基因TCP家族的轉錄因子—TEN調控黃瓜卷鬚發育和運動的分子機制,揭示了基因內部結合的轉錄因子如何調控基因表達,為深入認識株型發育的基因調控網絡提供了重要的突破。該團隊前期研究克隆了控制卷鬚發育的身份基因TEN,並揭示了黃瓜卷鬚同源器官是側枝。  TEN屬於TCP家族中CYC/TB1類的轉錄因子,通過對TEN調控卷鬚的形態發育和運動能力的分子機制的研究,作者們發現了TEN通過直接調控乙烯的合成來控制卷鬚的形態和攀援。
  • 【科技前沿】周軍課題組揭示纖毛穩態調控的新機制
    近日,周軍教授課題組在Protein & Cell在線發表題為O-GlcNAc transferase regulates centriole behavior and intraflagellar transport to promote ciliogenesis的論文,揭示了O-GlcNAc在纖毛穩態調控中的新機制【3】。
  • 研究揭示VOZ轉錄因子介導的水稻抗稻瘟病新機制
    近日,中國農業科學院植物保護研究所作物有害生物功能基因組研究創新團隊發現高等植物特有的維管植物單鋅指(VOZ)轉錄因子是植物抗病的關鍵因子,揭示了VOZ轉錄因子作為橋梁連通泛素連接酶對抗病蛋白調控的分子機制,為創製新的病害防控策略和抗病分子育種奠定了理論基礎。
  • 海洋無脊椎動物血淋巴分化和自噬研究獲進展
    中國科學院南海海洋研究所海洋生物分子生物學和遺傳學研究團隊在無脊椎動物牡蠣血淋巴的分化機制、吞噬細胞激活和自噬免疫方面取得了重要研究進展。相關研究近期分別發表在《免疫學前沿》《細胞和發育生物學前沿》。血淋巴細胞是無脊椎動物最核心的免疫器官,解析其分化和吞噬細胞激活的調控機制是理解細胞免疫的關鍵。
  • 研究揭示新冠病毒阻斷細胞自噬的分子機制
    required for autolysosomeformation」 的研究論文,該文揭示了SARS-CoV-2病毒編碼的輔助蛋白ORF3a通過阻斷HOPS複合物介導的SNARE複合體組裝,從而抑制自噬溶酶體形成的機制。