電子工程師都應該掌握的MOS管知識

2020-12-05 電子工程專輯


MOS管對於電子工程師來說是一種必須掌握的元器件,在現實應用中也比較常見,那麼,關於MOS管你了解多少,下面就給大家詳細介紹一下。



MOS管是金屬 (metal) — 氧化物 (oxide) — 半導體 (semiconductor) 場效應電晶體,或者稱是金屬 — 絕緣體 (insulator) — 半導體。MOS管的source和drain是可以對調的,他們都是在P型backgate中形成的N型區。 在多數情況下,這個兩個區是一樣的,即使兩端對調也不會影響器件的性能,這樣的器件被認為是對稱的。
雙極型電晶體把輸入端電流的微小變化放大後,在輸出端輸出一個大的電流變化。雙極型電晶體的增益就定義為輸出輸入電流之比 (beta) 。另一種電晶體叫做場效應管 (FET) ,把輸入電壓的變化轉化為輸出電流的變化。FET的增益等於它的transconductance, 定義為輸出電流的變化和輸入電壓變化之比。市面上常有的一般為N溝道和P溝道,而P溝道常見的為低壓MOS管。
場效應管通過投影一個電場在一個絕緣層上來影響流過電晶體的電流。事實上沒有電流流過這個絕緣體,所以FET管的GATE電流非常小。最普通的FET用一薄層二氧化矽來作為GATE極下的絕緣體。這種電晶體稱為金屬氧化物半導體 (MOS) 電晶體,或金屬氧化物半導體場效應管 (MOSFET) 。因為MOS管更小更省電,所以他們已經在很多應用場合取代了雙極型電晶體。


  • 可應用於放大,由於場效應管放大器的輸入阻抗很高,因此耦合電容可以容量較小,不必使用電解電容器

  • 很高的輸入阻抗非常適合作阻抗變換,常用於多級放大器的輸入級作阻抗變換

  • 可以用作可變電阻

  • 可以方便地用作恆流源

  • 可以用作電子開關

  • 在電路設計上的靈活性大,柵偏壓可正可負可零,三極體只能在正向偏置下工作,電子管只能在負偏壓下工作;另外輸入阻抗高,可以減輕信號源負載,易於跟前級匹配


結構和符號 (以N溝道增強型為例)  ——  在一塊濃度較低的P型矽上擴散兩個濃度較高的N型區作為漏極和源極,半導體表面覆蓋二氧化矽絕緣層並引出一個電極作為柵極。





  • VGS>0時,在Sio2介質中產生一個垂直於半導體表面的電場,排斥P區多子空穴而吸引少子電子。當VGS達到一定值時P區表面將形成反型層把兩側的N區溝通,形成導電溝道

  • VGS>0 → g吸引電子 → 反型層 → 導電溝道

  • VGS↑ → 反型層變厚 → VDS↑ → ID↑



  • VGS 》0且VDS增大到一定值後,靠近漏極的溝道被夾斷,形成夾斷區。



mos管的三個極分別是:G(柵極),D(漏極)s(源及),要求柵極和源及之間電壓大於某一特定值,漏極和源及才能導通。


MOS驅動器主要起波形整形和加強驅動的作用:假如MOS管的G信號波形不夠陡峭,在點評切換階段會造成大量電能損耗其副作用是降低電路轉換效率,MOS管發燒嚴峻,易熱損壞MOS管GS間存在一定電容,假如G信號驅動能力不夠,將嚴峻影響波形跳變的時間。
將G-S極短路,選擇萬用表的R×1檔,黑表筆接S極,紅表筆接D極,阻值應為幾歐至十幾歐。若發現某腳與其字兩腳的電阻均呈無限大,並且交換表筆後仍為無限大,則證實此腳為G極,由於它和另外兩個管腳是絕緣的。
將萬用表撥至R×1k檔分別丈量三個管腳之間的電阻。用交換表筆法測兩次電阻,其中電阻值較低(一般為幾千歐至十幾千歐)的一次為正向電阻,此時黑表筆的是S極,紅表筆接D極。因為測試前提不同,測出的RDS(on)值比手冊中給出的典型值要高一些。
在源-漏之間有一個PN結,因此根據PN結正、反向電阻存在差異,可識別S極與D極。例如用500型萬用表R×1檔實測一隻IRFPC50型VMOS管,RDS(on)=3.2W,大於0.58W(典型值)。
MOS管的檢測主要是判斷MOS管漏電、短路、斷路、放大。 假如有阻值沒被測,MOS管有漏電現象,具體步驟如下:
  1. 把連接柵極和源極的電阻移開,萬用表紅黑筆不變,假如移開電阻後錶針慢慢逐步退回到高阻或無限大,則MOS管漏電,不變則完好。

  2. 然後一根導線把MOS管的柵極和源極連接起來,假如指針立刻返回無限大,則MOS完好。

  3. 把紅筆接到MOS的源極S上,黑筆接到MOS管的漏極上,好的錶針指示應該是無限大。

  4. 用一隻100KΩ-200KΩ的電阻連在柵極和漏極上,然後把紅筆接到MOS的源極S上,黑筆接到MOS管的漏極上,這時錶針指示的值一般是0,這時是下電荷通過這個電阻對MOS管的柵極充電,產生柵極電場,因為電場產生導致導電溝道致使漏極和源極導通,故萬用表指針偏轉,偏轉的角度大,放電性越好。




圖中Q27是N溝道MOS管,U22A的1腳輸出高電平時Q27導通,將VCC—DDR內存電壓降壓,得到1.2V—HT總線供電,而U22A的1腳輸出低電平時Q27截止,1.2V_HT總線電壓為0V。



免責聲明: 本文來源網絡,版權歸原作者所有。如涉及作品版權問題,請與我聯繫刪除。
關注 微信公眾號『strongerHuang』,後臺回復「1024」查看更多內容,回復「加群」按規則加入技術交流群。


長按前往圖中包含的公眾號關注

相關焦點

  • mos管開關電路_pwm驅動mos管開關電路圖分享
    打開APP mos管開關電路_pwm驅動mos管開關電路圖分享 發表於 2018-01-04 13:41:14 MOS管分為N溝道與P溝道,所以開關電路也主要分為兩種。本文為大家帶來三種pwm驅動mos管開關電路解析。 常見pwm驅動mos管開關電路 IRF540就是很常用的MOS管了,特殊負載如H橋裡面的雙MOS驅動。
  • 功率MOS管燒毀的原因(米勒效應)!
    張飛電子,smt加工,接單客服如下:客服小姐:笑笑     客服小姐姐:萌萌電話:18994463546    電話:18994471546微信:zfszdzkf      微信:zfdzkf2張飛電子工程師教程,官方店鋪:fcsddz.taobao.commos在控制器電路中的工作狀態
  • MOS管GS波形中的振蕩應該如何消除
    打開APP MOS管GS波形中的振蕩應該如何消除 發表於 2019-09-08 09:59:07 對於咱們電源工程師來講,我們很多時候都在看波形,看輸入波形,MOS開關波形,電流波形,輸出二極體波形,晶片波形,MOS管的GS波形,我們拿開關GS波形為例來聊一下GS的波形。
  • MOS管方向的判斷方法
    請注意:不論NMOS管還是PMOS管,上述PIN腳的確定方法都是一樣的。      MOS管導通特性導通的意思是作為開關,相當於開關閉合。   mos管如何控制電流方向   mos管如何控制電流方向的呢,隨著科技的飛速發展,人們的日常生活已然離不開電子產品,而電子產品在生產的時候都會用到MOS管來精準控制電流。在MOS管實際使用的過程中,MOS管既可用於放大電流,又可以作為電子開關。由於應用廣泛,已然成為電子設備必不可少的電子元件。
  • 詳解mos管原理及幾種常見失效分析
    mos管是金屬(metal)—氧化物(oxide)—半導體(semiconductor)場效應電晶體,或者稱是金屬—絕緣體(insulator)—半導體。mos管的source和drain是可以對調的,他們都是在P型backgate中形成的N型區。
  • mos管如何並聯使用?
    打開APP mos管如何並聯使用? 發表於 2019-06-26 17:22:59   mos管如何並聯使用?
  • 電子世界的基石,MOS管的發展歷程
    MOS管的發明最早可以追溯到19世紀30年代,由德國人提出了Lilienfeld場效應電晶體的概念,之後貝爾實驗室的肖特基發明者Shcokley等人也嘗試過研究發明場效應管,但是都失敗了。1949年Shcokley提出了注入少子的雙極性電晶體的概念。到了1960年,有人提出用二氧化矽改善雙極性電晶體的性能,就此MOS管來到了人世間。
  • 如何處理MOS管小電流發熱?聽聽大牛工程師怎麼說
    因為穿通擊穿場強沒有達到雪崩擊穿的場強,不會產生大量電子空穴對。(4)穿通擊穿一般發生在溝道體內,溝道表面不容易發生穿通,這主要是由於溝道注入使表面濃度比濃度大造成,所以,對NMOS管一般都有防穿通注入。(5)一般的,鳥嘴邊緣的濃度比溝道中間濃度大,所以穿通擊穿一般發生在溝道中間。
  • MOS管的發展歷程
    MOS管的發明最早可以追溯到19世紀30年代,由德國人提出了Lilienfeld場效應電晶體的概念,之後貝爾實驗室的肖特基發明者Shcokley等人也嘗試過研究發明場效應管,但是都失敗了。1949年Shcokley提出了注入少子的雙極性電晶體的概念。到了1960年,有人提出用二氧化矽改善雙極性電晶體的性能,就此MOS管來到了人世間。
  • 詳細講解MOS管的米勒效應
    (Vgs上升,則導通電阻下降,從而Vds下降)米勒效應在MOS驅動中臭名昭著,他是由MOS管的米勒電容引發的米勒效應,在MOS管開通過程中,GS電壓上升到某一電壓值後GS電壓有一段穩定值,過後GS電壓又開始上升直至完全導通。為什麼會有穩定值這段呢?
  • 三極體和MOS管有啥區別?
    2、成本問題:三極體便宜,mos管貴。3、功耗問題:三極體損耗大。4、驅動能力:mos管常用來電源開關,以及大電流地方開關電路。三極體比較便宜,用起來方便,常用在數字電路開關控制。MOS管用於高頻高速電路,大電流場合,以及對基極或漏極控制電流比較敏感的地方。
  • 三極體比MOS管開關功能略勝一籌?
    2、成本問題:三極體便宜,mos管貴。3、功耗問題:三極體損耗大。4、驅動能力:mos管常用來電源開關,以及大電流地方開關電路。實際上就是三極體比較便宜,用起來方便,常用在數字電路開關控制。但此時每個pn結的兩側都會有電荷存在,此時如果集電極-發射極加正電壓,在電場作用下,發射區的電子往基區運動(實際上都是電子的反方向運動),由於基區寬度很小,電子很容易越過基區到達集電區,並與此處的PN的空穴複合(靠近集電極),為維持平衡,在正電場的作用下集電區的電子加速外集電極運動,而空穴則為pn結處運動,此過程類似一個雪崩過程。
  • MOS管工作原理圖詳解-MOS管工作原理電路圖及結構分析-KIA MOS管
    對於這兩種增強型MOS管,比較常用的是NMOS。原因是導通電阻小,且容易製造。所以開關電源和馬達驅動的應用中,一般都用NMOS。下面的介紹中,也多以NMOS為主。這是因為在P型半導體端為正電壓時,N型半導體內的負電子被吸引而湧向加有正電壓的P型半導體端,而P型半導體端內的正電子則朝N型半導體端運動,從而形成導通電流。同理,當二極體加上反向電壓(P端接負極,N端接正極)時,這時在P型半導體端為負電壓,正電子被聚集在P型半導體端,負電子則聚集在N型半導體端,電子不移動,其PN結沒有電流通過,二極體截止。
  • mos管導通壓降多大?
    打開APP mos管導通壓降多大?MOS管的source和drain是可以對調的,他們都是在P型backgate中形成的N型區。在多數情況下,這個兩個區是一樣的,即使兩端對調也不會影響器件的性能。這樣的器件被認為是對稱的。
  • MOS管在電動車窗開關上的應用
    而mos管在電動車窗的關鍵部位——開關,佔據了非常重要的位置。電動車窗開關分為功率型和信號型兩種,功率型為開關直接控制車窗電動機,信號型為開關先向汽車車身控制模塊(Body Control module,BCM)提供信號,再由BCM驅動電動車窗。
  • mos管開關電路圖大全(八款mos管開關電路設計原理圖詳解)
    mos管開關電路圖大全(八款mos管開關電路設計原理圖詳解)
  • 深度分析MOS場效應管在消費類電子中的電路設計
    本文引用地址:http://www.eepw.com.cn/article/284443.htm  首先我們來看下經常使用的增強型mos場效應管:N溝道和P溝道mos場效應管。  在消費類電子設計中由於對功耗要求比較嚴格,通常使用N溝道和P溝道MOS場效應管來做電平的轉換、鋰電池的充電放電電路控制和電源的控制。
  • MOS管自舉電路工作原理及升壓自舉電路結構圖
    MOS管自舉電路介紹:自舉電路也叫升壓電路,是利用自舉升壓二極體,自舉升壓電容等電子元件,使電容放電電壓和電源電壓疊加,從而使電壓升高。有的電路升高的電壓能達到數倍電源電壓。MOS管自舉電路原理:舉個簡單的例子:有一個12V的電路,電路中有一個場效應管需要15V的驅動電壓,這個電壓怎麼弄出來?就是用自舉。
  • 功率MOS管燒毀的原因(米勒效應)
    CMOS電路都怕靜電 Mos開關原理(簡要)。Mos是電壓驅動型器件,只要柵極和源級間給一個適當電壓,源級和漏級間通路就形成。這個電流通路的電阻被成為mos內阻,就是導通電阻<Rds(on)>。
  • MOS管在開關電路中的使用
    N溝道mos管開關電路 NMOS的特性,Vgs大於一定的值就會導通,適合用於源極接地時的情況(低端驅動),只要柵極電壓大於參數手冊中給定的Vgs就可以了,漏極D接電源,源極S接地。而高端驅動的MOS管導通時源極電壓與漏極電壓(VCC)相同,所以這時柵極電壓要比VCC大4V或10V.如果在同一個系統裡,要得到比VCC大的電壓,就要專門的升壓電路了。很多馬達驅動器都集成了電荷泵,要注意的是應該選擇合適的外接電容,以得到足夠的短路電流去驅動MOS管。 MOS管是電壓驅動,按理說只要柵極電壓到到開啟電壓就能導通DS,柵極串多大電阻均能導通。