功率MOS管燒毀的原因(米勒效應)

2020-11-26 電子工程專輯


mos在控制器電路中的工作狀態:開通過程(由截止到導通的過渡過程)、導通狀態、關斷過程(由導通到截止的過渡過程)、截止狀態。


Mos主要損耗也對應這幾個狀態,開關損耗(開通過程和關斷過程),導通損耗,截止損耗(漏電流引起的,這個忽略不計),還有雪崩能量損耗。只要把這些損耗控制在mos承受規格之內,mos即會正常工作,超出承受範圍,即發生損壞。而開關損耗往往大於導通狀態損耗,不同mos這個差距可能很大。


Mos損壞主要原因:


過流----------持續大電流或瞬間超大電流引起的結溫過高而燒毀;

過壓----------源漏過壓擊穿、源柵極過壓擊穿;

靜電----------靜電擊穿。CMOS電路都怕靜電


Mos開關原理(簡要)。Mos是電壓驅動型器件,只要柵極和源級間給一個適當電壓,源級和漏級間通路就形成。這個電流通路的電阻被成為mos內阻,就是導通電阻<Rds(on)>。這個內阻大小基本決定了mos晶片能承受的最大導通電流(當然和其它因素有關,最有關的是熱阻)。內阻越小承受電流越大(因為發熱小)。



Mos問題遠沒這麼簡單,麻煩在它的柵極和源級間,源級和漏級間,柵極和漏級間內部都有等效電容。所以給柵極電壓的過程就是給電容充電的過程(電容電壓不能突變),所以mos源級和漏級間由截止到導通的開通過程受柵極電容的充電過程制約。


然而,這三個等效電容是構成串並聯組合關係,它們相互影響,並不是獨立的,如果獨立的就很簡單了。其中一個關鍵電容就是柵極和漏級間的電容Cgd,這個電容業界稱為米勒電容。這個電容不是恆定的,隨柵極和漏級間電壓變化而迅速變化。這個米勒電容是柵極和源級電容充電的絆腳石,因為柵極給柵-源電容Cgs充電達到一個平臺後,柵極的充電電流必須給米勒電容Cgd充電,這時柵極和源級間電壓不再升高,達到一個平臺,這個是米勒平臺(米勒平臺就是給Cgd充電的過程),米勒平臺大家首先想到的麻煩就是米勒振蕩。(即,柵極先給Cgs充電,到達一定平臺後再給Cgd充電)


因為這個時候源級和漏級間電壓迅速變化,內部電容相應迅速充放電,這些電流脈衝會導致mos寄生電感產生很大感抗,這裡面就有電容,電感,電阻組成震蕩電路(能形成2個迴路),並且電流脈衝越強頻率越高震蕩幅度越大。所以最關鍵的問題就是這個米勒平臺如何過渡。


Gs極加電容,減慢mos管導通時間,有助於減小米勒振蕩。防止mos管燒毀。


過快的充電會導致激烈的米勒震蕩,但過慢的充電雖減小了震蕩,但會延長開關從而增加開關損耗。Mos開通過程源級和漏級間等效電阻相當於從無窮大電阻到阻值很小的導通內阻(導通內阻一般低壓mos只有幾毫歐姆)的一個轉變過程。


比如一個mos最大電流100a,電池電壓96v,在開通過程中,有那麼一瞬間(剛進入米勒平臺時)mos發熱功率是P=V*I(此時電流已達最大,負載尚未跑起來,所有的功率都降落在MOS管上),P=96*100=9600w!這時它發熱功率最大,然後發熱功率迅速降低直到完全導通時功率變成100*100*0.003=30w(這裡假設這個mos導通內阻3毫歐姆)。開關過程中這個發熱功率變化是驚人的。


如果開通時間慢,意味著發熱從9600w到30w過渡的慢,mos結溫會升高的厲害。所以開關越慢,結溫越高,容易燒mos。為了不燒mos,只能降低mos限流或者降低電池電壓,比如給它限制50a或電壓降低一半成48v,這樣開關發熱損耗也降低了一半。不燒管子了。


這也是高壓控容易燒管子原因,高壓控制器和低壓的只有開關損耗不一樣(開關損耗和電池端電壓基本成正比,假設限流一樣),導通損耗完全受mos內阻決定,和電池電壓沒任何關係。


其實整個mos開通過程非常複雜。裡面變量太多。總之就是開關慢不容易米勒震蕩,但開關損耗大,管子發熱大,開關速度快理論上開關損耗低(只要能有效抑制米勒震蕩),但是往往米勒震蕩很厲害(如果米勒震蕩很嚴重,可能在米勒平臺就燒管子了),反而開關損耗也大,並且上臂mos震蕩更有可能引起下臂mos誤導通,形成上下臂短路。


所以這個很考驗設計師的驅動電路布線和主迴路布線技能。最終就是找個平衡點(一般開通過程不超過1us)。開通損耗這個最簡單,只和導通電阻成正比,想大電流低損耗找內阻低的。


下面介紹下對普通用戶實用點的。

Mos挑選的重要參數簡要說明。以datasheet舉例說明。


柵極電荷。Qgs, Qgd


Qgs:指的是柵極從0v充電到對應電流米勒平臺時總充入電荷(實際電流不同,這個平臺高度不同,電流越大,平臺越高,這個值越大)。這個階段是給Cgs充電(也相當於Ciss,輸入電容)。


Qgd:指的是整個米勒平臺的總充電電荷(在這稱為米勒電荷)。這個過程給Cgd(Crss,這個電容隨著gd電壓不同迅速變化)充電。


下面是型號stp75nf75.


我們普通75管Qgs是27nc,Qgd是47nc。結合它的充電曲線。

進入平臺前給Cgs充電,總電荷Qgs 27nc,平臺米勒電荷Qgd 47nc。


而在開關過衝中,mos主要發熱區間是粗紅色標註的階段。從Vgs開始超過閾值電壓,到米勒平臺結束是主要發熱區間。其中米勒平臺結束後mos基本完全打開這時損耗是基本導通損耗(mos內阻越低損耗越低)。


閾值電壓前,mos沒有打開,幾乎沒損耗(只有漏電流引起的一點損耗)。其中又以紅色拐彎地方損耗最大(Qgs充電將近結束,快到米勒平臺和剛進入米勒平臺這個過程發熱功率最大(更粗線表示)。


所以一定充電電流下,紅色標註區間總電荷小的管子會很快度過,這樣發熱區間時間就短,總發熱量就低。所以理論上選擇Qgs和Qgd小的mos管能快速度過開關區。


導通內阻。Rds(on)。這個耐壓一定情況下是越低越好。不過不同廠家標的內阻是有不同測試條件的。測試條件不同,內阻測量值會不一樣。同一管子,溫度越高內阻越大(這是矽半導體材料在mos製造工藝的特性,改變不了,能稍改善)。所以大電流測試內阻會增大(大電流下結溫會顯著升高),小電流或脈衝電流測試,內阻降低(因為結溫沒有大幅升高,沒熱積累)。


有的管子標稱典型內阻和你自己用小電流測試幾乎一樣,而有的管子自己小電流測試比標稱典型內阻低很多(因為它的測試標準是大電流)。當然這裡也有廠家標註不嚴格問題,不要完全相信。


所以選擇標準是------------找Qgs和Qgd小的mos管,並同時符合低內阻的mos管。



#推薦閱讀#


▼ 點擊閱讀原文下載《一周搞定系列之模電全集》

相關焦點

  • 功率MOS管燒毀的原因(米勒效應)!
    Mos損壞主要原因:過流持續大電流或瞬間超大電流引起的結溫過高而燒毀;過壓源漏過壓擊穿、源柵極過壓擊穿;靜電靜電擊穿。CMOS電路都怕靜電;Mos開關原理(簡要)。防止mos管燒毀。過快的充電會導致激烈的米勒震蕩,但過慢的充電雖減小了震蕩,但會延長開關從而增加開關損耗。Mos開通過程源級和漏級間等效電阻相當於從無窮大電阻到阻值很小的導通內阻(導通內阻一般低壓mos只有幾毫歐姆)的一個轉變過程。
  • 詳細講解MOS管的米勒效應
    由於米勒電容阻止了Vgs的上升,從而也就阻止了Vds的下降,這樣就會使損耗的時間加長。(Vgs上升,則導通電阻下降,從而Vds下降)米勒效應在MOS驅動中臭名昭著,他是由MOS管的米勒電容引發的米勒效應,在MOS管開通過程中,GS電壓上升到某一電壓值後GS電壓有一段穩定值,過後GS電壓又開始上升直至完全導通。為什麼會有穩定值這段呢?
  • MOS管開關時的米勒效應--通俗易懂篇
    米勒效應指在MOS管開通過程會產生米勒平臺,原理如下。理論上驅動電路在G級和S級之間加足夠大的電容可以消除米勒效應。但此時開關時間會拖的很長。一般推薦值加0.1Ciess的電容值是有好處的。下圖中粗黑線中那個平緩部分就是米勒平臺。
  • 乾貨| 這樣講你就懂了:MOS管開關時的米勒效應
    米勒效應指在MOS管開通過程會產生米勒平臺,原理如下。理論上驅動電路在G級和S級之間加足夠大的電容可以消除米勒效應。但此時開關時間會拖的很長。一般推薦值加0.1Ciess的電容值是有好處的。下圖中粗黑線中那個平緩部分就是米勒平臺。
  • MOS開關的米勒效應
    米勒效應在MOS管的開關中是一個重要的現象,尤其是在功率電路中,對於電路的損耗影響是非常重要的。
  • 防止MOS管燒毀,先要知道為什麼它會燒?
    這裡面就有電容、電感、電阻組成震蕩電路(能形成2個迴路),並且電流脈衝越強頻率越高振蕩幅度越大,所以最關鍵的問題就是這個米勒平臺如何過渡。 Gs極加電容,減慢mos管導通時間,有助於減小米勒振蕩。防止MOS管燒毀。
  • 搞懂MOS管,你不得不知道的米勒效應
    一、認識米勒電容如圖,MOS管內部有寄生電容Cgs,Cgd,Cds。
  • MOS管工作原理圖詳解-MOS管工作原理電路圖及結構分析-KIA MOS管
    由圖可看出,對於N溝道的場效應管其源極和漏極接在N型半導體上,同樣對於P溝道的場效應管其源極和漏極則接在P型半導體上。我們知道一般三極體是由輸入的電流控制輸出的電流。但對於場效應管,其輸出電流是由輸入的電壓(或稱電場)控制,可以認為輸入電流極小或沒有輸入電流,這使得該器件有很高的輸入阻抗,同時這也是我們稱之為場效應管的原因。
  • MOS管在電動車窗開關上的應用
    而mos管在電動車窗的關鍵部位——開關,佔據了非常重要的位置。電動車窗開關分為功率型和信號型兩種,功率型為開關直接控制車窗電動機,信號型為開關先向汽車車身控制模塊(Body Control module,BCM)提供信號,再由BCM驅動電動車窗。
  • 【經典】功率MOS管燒毀的原因(米勒效應)!
  • 乾貨 | 米勒效應雜談
    自從功率MOS廣泛用於開關電源後,米勒效應逐漸為電源應用工程師所重視。多數初進的電子工程師覺得好像米勒效應是新的發現。其實,米勒效應的發現非常早,不但比MOS管早,甚至比BJT(雙極型三極體)還要早得多。
  • 米勒效應(Miller Effect)
    之前我們在介紹MOS和IGBT的文章中也有提到米勒電容和米勒效應的概念,在IGBT的導通過程分析的文章中我們也簡單提到過米勒平臺,下面我們來詳細地聊一聊。下面我們以MOS中的米勒效應來展開說明:米勒效應在MOS驅動中臭名昭著,它是由MOS管的米勒電容引發的米勒效應,在MOS管開通過程中,GS電壓上升到某一電壓值後GS間電壓會經過一段不變值的過程,過後GS間電壓又開始上升直至完全導通,如下圖中最粗的曲線所示:
  • 詳解mos管原理及幾種常見失效分析
    mos管是金屬(metal)—氧化物(oxide)—半導體(semiconductor)場效應電晶體,或者稱是金屬—絕緣體(insulator)—半導體。mos管的source和drain是可以對調的,他們都是在P型backgate中形成的N型區。
  • 深度分析MOS場效應管在消費類電子中的電路設計
    本文引用地址:http://www.eepw.com.cn/article/284443.htm  首先我們來看下經常使用的增強型mos場效應管:N溝道和P溝道mos場效應管。  在消費類電子設計中由於對功耗要求比較嚴格,通常使用N溝道和P溝道MOS場效應管來做電平的轉換、鋰電池的充電放電電路控制和電源的控制。
  • 9926 SOP-8 N+N雙晶片低壓大晶片MOS管
    9926mos管是性能很高的溝槽N溝道MOSFET,具有極高的單元密度,可為大多數小功率開關和負載開關應用提供出色的RDSON和柵極電荷,9926mos管符合RoHS和綠色產品要求,並獲得全面的功能可靠性認證。
  • 乾貨|靜電為什麼能擊穿MOS管?
    現在的mos管沒有那麼容易被擊穿,尤其是是大功率的vmos,主要是不少都有二極體保護。vmos柵極電容大,感應不出高壓。若是碰上3DO型的mos管冬天不帶防靜電環試試,基本上摸一個掛一個。 與乾燥的北方不同,南方潮溼不易產生靜電。還有就是現在大多數CMOS器件內部已經增加了IO口保護。
  • MOS管的發展歷程
    1MOS的起源 MOS管的全稱是金屬-氧化物-半導體場效應電晶體。MOS管的發明最早可以追溯到19世紀30年代,由德國人提出了Lilienfeld場效應電晶體的概念,之後貝爾實驗室的肖特基發明者Shcokley等人也嘗試過研究發明場效應管,但是都失敗了。1949年Shcokley提出了注入少子的雙極性電晶體的概念。到了1960年,有人提出用二氧化矽改善雙極性電晶體的性能,就此MOS管來到了人世間。
  • 臭名昭著的MOS管米勒效應
    如果你不了解MOS管輸入輸出電容概念,請點擊:帶你讀懂MOS管參數「熱阻、輸入輸出電容及開關時間」米勒效應的罪魁禍首就是米勒電容,米勒效應指其輸入輸出之間的分布電容Cgd在反相放大的作用下,使得等效輸入電容值放大的效應,米勒效應會形成米勒平臺。首先我們需要知道的一個點是:因為MOS管制造工藝,必定產生Cgd,也就是米勒電容必定存在,所以米勒效應不可避免。
  • 靜電為什麼能擊穿MOS管?
    現在的mos管沒有那麼容易被擊穿,尤其是是大功率的vmos,主要是不少都有二極體保護。vmos柵極電容大,感應不出高壓。若是碰上3DO型的mos管冬天不帶防靜電環試試,基本上摸一個掛一個。與乾燥的北方不同,南方潮溼不易產生靜電。還有就是現在大多數CMOS器件內部已經增加了IO口保護。但用手直接接觸CMOS器件管腳不是好習慣。至少使管腳可焊性變差。
  • 三極體比MOS管開關功能略勝一籌?
    2、成本問題:三極體便宜,mos管貴。3、功耗問題:三極體損耗大。4、驅動能力:mos管常用來電源開關,以及大電流地方開關電路。實際上就是三極體比較便宜,用起來方便,常用在數字電路開關控制。三極體工作時,兩個pn結都會感應出電荷,當做開關管處於導通狀態時,三極體處於飽和狀態,如果這時三極體截至,pn結感應的電荷要恢復到平衡狀態,這個過程需要時間。而mos三極體工作方式不同,沒有這個恢復時間,因此可以用作高速開關管。(1)場效應管是電壓控制元件,而電晶體是電流控制元件。