防止MOS管燒毀,先要知道為什麼它會燒?

2020-12-05 電子工程專輯

MOS在控制器電路中的工作狀態:開通過程(由截止到導通的過渡過程)、導通狀態、關斷過程(由導通到截止的過渡過程)、截止狀態。


MOS主要損耗也對應這幾個狀態:開關損耗(開通過程和關斷過程),導通損耗,截止損耗(漏電流引起的,這個忽略不計),還有雪崩能量損耗。


只要把這些損耗控制在MOS承受規格之內,MOS即會正常工作,超出承受範圍,即發生損壞。而開關損耗往往大於導通狀態損耗,不同MOS這個差距可能很大。


MOS損壞主要原因:



MOS是電壓驅動型器件,只要柵極和源級間給一個適當電壓,源級和漏級間通路就形成。這個電流通路的電阻被成為MOS內阻,就是導通電阻<Rds(on)>。這個內阻大小基本決定了MOS晶片能承受的最大導通電流(當然和其它因素有關,最有關的是熱阻),內阻越小承受電流越大(因為發熱小)。



MOS問題遠沒這麼簡單,麻煩在它的柵極和源級間,源級和漏級間,柵極和漏級間內部都有等效電容。所以給柵極電壓的過程就是給電容充電的過程(電容電壓不能突變),而MOS源級和漏級間由截止到導通的開通過程受柵極電容的充電過程制約。


然而,這三個等效電容是構成串並聯組合關係,它們相互影響,並不是獨立的,如果獨立的就很簡單了。


其中一個關鍵電容就是柵極和漏級間的電容Cgd,這個電容業界稱為米勒電容。這個電容不是恆定的,隨柵極和漏級間電壓變化而迅速變化。這個米勒電容是柵極和源級電容充電的絆腳石,因為柵極給柵-源電容Cgs充電達到一個平臺後,柵極的充電電流必須給米勒電容Cgd充電。這時柵極和源級間電壓不再升高,達到一個平臺,這個是米勒平臺(米勒平臺就是給Cgd充電的過程),米勒平臺大家首先想到的麻煩就是米勒振蕩。(即,柵極先給Cgs充電,到達一定平臺後再給Cgd充電)。


因為這個時候源級和漏級間電壓迅速變化,內部電容相應迅速充放電,這些電流脈衝會導致MOS寄生電感產生很大感抗。這裡面就有電容、電感、電阻組成震蕩電路(能形成2個迴路),並且電流脈衝越強頻率越高振蕩幅度越大,所以最關鍵的問題就是這個米勒平臺如何過渡。


Gs極加電容,減慢mos管導通時間,有助於減小米勒振蕩。防止MOS管燒毀。


過快的充電會導致激烈的米勒振蕩,但過慢的充電雖減小了振蕩,但會延長開關從而增加開關損耗。MOS開通過程源級和漏級間等效電阻相當於從無窮大電阻到阻值很小的導通內阻(導通內阻一般低壓MOS只有幾毫歐姆)的一個轉變過程。



比如一個MOS最大電流100a,電池電壓96v,在開通過程中,有那麼一瞬間(剛進入米勒平臺時)MOS發熱功率是P=V*I(此時電流已達最大,負載尚未跑起來,所有的功率都降落在MOS管上),P=96*100=9600w!這時它發熱功率最大,然後發熱功率迅速降低直到完全導通時功率變成100*100*0.003=30w(這裡假設這個MOS導通內阻3毫歐姆),開關過程中這個發熱功率變化是驚人的。


如果開通時間慢,意味著發熱從9600w到30w過渡的慢,MOS結溫會升高的厲害。所以開關越慢,結溫越高,容易燒MOS為了不燒MOS,只能降低MOS限流或者降低電池電壓。比如給它限制50a或電壓降低一半成48v,這樣開關發熱損耗也降低了一半,不燒管子了。


這也是高壓控容易燒管子原因,高壓控制器和低壓的只有開關損耗不一樣(開關損耗和電池端電壓基本成正比,假設限流一樣),導通損耗完全受MOS內阻決定,和電池電壓沒任何關係。


其實整個MOS開通過程非常複雜。裡面變量太多。總之就是開關慢不容易米勒震蕩,但開關損耗大,管子發熱大,開關速度快理論上開關損耗低(只要能有效抑制米勒震蕩)。但是往往米勒震蕩很厲害(如果米勒震蕩很嚴重,可能在米勒平臺就燒管子了),反而開關損耗也大,並且上臂MOS震蕩更有可能引起下臂MOS誤導通,形成上下臂短路。


所以這個很考驗設計師的驅動電路布線和主迴路布線技能。最終就是找個平衡點(一般開通過程不超過1us)。開通損耗這個最簡單,只和導通電阻成正比,想大電流低損耗找內阻低的。




▼下面介紹點對普通用戶實用的▼


MOS挑選的重要參數簡要說明,以datasheet舉例說明。


柵極電荷:Qgs、Qgd。


Qgs:

指的是柵極從0v充電到對應電流米勒平臺時總充入電荷(實際電流不同,這個平臺高度不同,電流越大,平臺越高,這個值越大)。這個階段是給Cgs充電(也相當於Ciss,輸入電容)。


Qgd:

指的是整個米勒平臺的總充電電荷(在這稱為米勒電荷)。這個過程給Cgd(Crss,這個電容隨著gd電壓不同迅速變化)充電。


▼舉例說明▼


以型號stp75nf75的MOS管為例。


普通75管Qgs是27nc,Qgd是47nc。結合它的充電曲線。


進入平臺前給Cgs充電,總電荷Qgs 27nc,平臺米勒電荷Qgd 47nc。



而在開關過衝中,MOS主要發熱區間是粗紅色標註的階段。從Vgs開始超過閾值電壓,到米勒平臺結束是主要發熱區間。其中米勒平臺結束後MOS基本完全打開這時損耗是基本導通損耗(MOS內阻越低損耗越低)。


閾值電壓前,MOS沒有打開,幾乎沒損耗(只有漏電流引起的一點損耗)。其中又以紅色拐彎地方損耗最大(Qgs充電將近結束,快到米勒平臺和剛進入米勒平臺這個過程發熱功率最大(更粗線表示)。


所以一定充電電流下,紅色標註區間總電荷小的管子會很快度過,這樣發熱區間時間就短,總發熱量就低。所以理論上選擇Qgs和Qgd小的MOS管能快速度過開關區。


導通內阻:Rds(on);這個耐壓一定情況下是越低越好。不過不同廠家標的內阻是有不同測試條件的。測試條件不同,內阻測量值會不一樣。同一管子,溫度越高內阻越大(這是矽半導體材料在MOS製造工藝的特性,改變不了,能稍改善)。所以大電流測試內阻會增大(大電流下結溫會顯著升高),小電流或脈衝電流測試,內阻降低(因為結溫沒有大幅升高,沒熱積累)。


有的管子標稱典型內阻和你自己用小電流測試幾乎一樣,而有的管子自己小電流測試比標稱典型內阻低很多(因為它的測試標準是大電流)。當然這裡也有廠家標註不嚴格問題,不要完全相信。


所以選擇標準是:找Qgs和Qgd小的MOS管,並同時符合低內阻的M管。


-END-


經典資料,工程師多年經驗總結。



《單片機硬體電路設計實例

...

點擊閱讀原文可直接下載完整資料,如果您的手機下載出錯,請使用電腦訪問網站下 載,下載連結:https://mbb.eet-china.com/download/20360.html

相關焦點

  • 功率MOS管燒毀的原因(米勒效應)
    只要把這些損耗控制在mos承受規格之內,mos即會正常工作,超出承受範圍,即發生損壞。而開關損耗往往大於導通狀態損耗,不同mos這個差距可能很大。 Gs極加電容,減慢mos管導通時間,有助於減小米勒振蕩。防止mos管燒毀。
  • 功率MOS管燒毀的原因(米勒效應)!
    防止mos管燒毀。過快的充電會導致激烈的米勒震蕩,但過慢的充電雖減小了震蕩,但會延長開關從而增加開關損耗。Mos開通過程源級和漏級間等效電阻相當於從無窮大電阻到阻值很小的導通內阻(導通內阻一般低壓mos只有幾毫歐姆)的一個轉變過程。
  • MOS管在電動車窗開關上的應用
    而mos管在電動車窗的關鍵部位——開關,佔據了非常重要的位置。電動車窗開關分為功率型和信號型兩種,功率型為開關直接控制車窗電動機,信號型為開關先向汽車車身控制模塊(Body Control module,BCM)提供信號,再由BCM驅動電動車窗。
  • 靜電為什麼能擊穿MOS管?
    其實MOS管一個ESD敏感器件,它本身的輸入電阻很高,而柵-源極間電容又非常小,所以極易受外界電磁場或靜電的感應而帶電,又因在靜電較強的場合難於洩放電荷,容易引起靜電擊穿。
  • 乾貨|靜電為什麼能擊穿MOS管?
    其實MOS管一個ESD敏感器件,它本身的輸入電阻很高,而柵-源極間電容又非常小,所以極易受外界電磁場或靜電的感應而帶電,又因在靜電較強的場合難於洩放電荷,容易引起靜電擊穿。
  • mos管開關電路圖大全(八款mos管開關電路設計原理圖詳解)
    mos管開關電路圖大全(八款mos管開關電路設計原理圖詳解)
  • mos管導通壓降多大?
    D極和S極之間的內生電阻,它的存在會產生壓降,所以越小越好。對於信號控制(控制DS極導通接地實現高低平)來說只要電壓,不需要電流(為什麼?這裡是信號和電源的區別,基礎很重要,這裡不做解釋,不懂的請先惡補一下基礎),所以只要求MOS管導通時產生的壓降越小越好,可以使D極的電壓直接被拉為接近0v,因此首選Vgs=4.5v左右,而不選10v。
  • mos管如何並聯使用?
    打開APP mos管如何並聯使用?,其結果必然是飽和電壓小的MOS管先流過較大的電流,隨著結溫的升高,管壓降逐漸增大,則流過管壓降大的MOS管的電流又會逐漸增大,從而減輕管壓降小的MOS管的工作壓力。
  • MOS管自舉電路工作原理及升壓自舉電路結構圖
    常用自舉電路(摘自fairchild,使用說明書AN-6076《供高電壓柵極驅動器IC 使用的自舉電路的設計和使用準則》)the boost converter,或者叫step-up converter,是一種開關直流升壓電路,它可以是輸出電壓比輸入電壓高。假定那個開關(三極體或者mos管)已經斷開了很長時間,所有的元件都處於理想狀態,電容電壓等於輸入電壓。
  • 三極體比MOS管開關功能略勝一籌?
    2、成本問題:三極體便宜,mos管貴。3、功耗問題:三極體損耗大。4、驅動能力:mos管常用來電源開關,以及大電流地方開關電路。實際上就是三極體比較便宜,用起來方便,常用在數字電路開關控制。MOS管用於高頻高速電路,大電流場合,以及對基極或漏極控制電流比較敏感的地方。一般來說低成本場合,普通應用的先考慮用三極體,不行的話考慮MOS管實際上說電流控制慢,電壓控制快這種理解是不對的。要真正理解得了解雙極電晶體和mos電晶體的工作方式才能明白。
  • MOS管工作原理圖詳解-MOS管工作原理電路圖及結構分析-KIA MOS管
    MOS管的三個管腳之間有寄生電容存在,這不是我們需要的,而是由於製造工藝限制產生的。寄生電容的存在使得在設計或選擇驅動電路的時候要麻煩一些,但沒有辦法避免,後邊再詳細介紹。MOS管工作原理圖電源開關電路詳解這是該裝置的核心,在介紹該部分工作原理之前,先簡單解釋一下MOS的工作原理圖。它一般有耗盡型和增強型兩種。本文使用的為增強型MOSMOS管,其內部結構見mos管工作原理圖。它可分為NPN型PNP型。
  • 如何處理MOS管小電流發熱?聽聽大牛工程師怎麼說
    那如何防止穿通呢?這就要回到二極體反偏特性了,耗盡區寬度除了與電壓有關,還與兩邊的摻雜濃度有關,濃度越高可以抑制耗盡區寬度延展,所以flow裡面有個防穿通注入(APT:AnTI Punch Through),記住它要打和well同type的specis。
  • 詳細講解MOS管的米勒效應
    (Vgs上升,則導通電阻下降,從而Vds下降)米勒效應在MOS驅動中臭名昭著,他是由MOS管的米勒電容引發的米勒效應,在MOS管開通過程中,GS電壓上升到某一電壓值後GS電壓有一段穩定值,過後GS電壓又開始上升直至完全導通。為什麼會有穩定值這段呢?
  • 三極體和MOS管有啥區別?
    2、成本問題:三極體便宜,mos管貴。3、功耗問題:三極體損耗大。4、驅動能力:mos管常用來電源開關,以及大電流地方開關電路。三極體比較便宜,用起來方便,常用在數字電路開關控制。MOS管用於高頻高速電路,大電流場合,以及對基極或漏極控制電流比較敏感的地方。
  • MOS管方向的判斷方法
    下圖左邊是N溝道的MOS管,右邊是P溝道的MOS管寄生二極體的方向如何判斷呢?它的判斷規則就是對於N溝道,由S極指向D極;對於P溝道,由D極指向S極。   mos管如何控制電流方向   mos管如何控制電流方向的呢,隨著科技的飛速發展,人們的日常生活已然離不開電子產品,而電子產品在生產的時候都會用到MOS管來精準控制電流。在MOS管實際使用的過程中,MOS管既可用於放大電流,又可以作為電子開關。由於應用廣泛,已然成為電子設備必不可少的電子元件。
  • mos管開關電路_pwm驅動mos管開關電路圖分享
    打開APP mos管開關電路_pwm驅動mos管開關電路圖分享 發表於 2018-01-04 13:41:14 MOS管開關電路是利用一種電路,是利用MOS管柵極(g)控制MOS管源極(s)和漏極(d)通斷的原理構造的電路。
  • 詳解mos管原理及幾種常見失效分析
    本文引用地址:http://www.eepw.com.cn/article/201710/368826.htm  mos管—工作原理  mos管的工作原理(以N溝道增強型mos場效應管)它是利用VGS來控制「感應電荷」的多少,以改變由這些「感應電荷」形成的導電溝道的狀況,然後達到控制漏極電流的目的。
  • 三極體和MOS管具體有哪些區別?
    雙極型管是電流控制器件(通過基極較小的電流控制較大的集電極電流),MOS管是電壓控制器件(通過柵極電壓控制源漏間導通電阻)。MOS管(場效應管)的導通壓降下,導通電阻小,柵極驅動不需要電流,損耗小,驅動電路簡單,自帶保護二極體,熱阻特性好,適合大功率並聯,缺點開關速度不高,比較昂貴。
  • 用MOS管防止電源反接的原理?
    一般可以使用在電源的正極串入一個二極體解決,不過,由於二極體有壓降,會給電路造成不必要的損耗,尤其是電池供電場合,本來電池電壓就3.7V,你就用二極體降了0.6V,使得電池使用時間大減。
  • 用MOS管防止電源反接的原理
    電源反接,會給電路造成損壞,不過,電源反接是不可避免的。所以,我麼就需要給電路中加入保護電路,達到即使接反電源,也不會損壞的目的。  一般可以使用在電源的正極串入一個二極體解決,不過,由於二極體有壓降,會給電路造成不必要的損耗,尤其是電池供電場合,本來電池電壓就3.7V,你就用二極體降了0.6V,使得電池使用時間大減。