EMI和EMC電路中磁珠和電感起到作用有何不同?

2020-11-23 電子產品世界

  磁珠和電感在解決EMIEMC方面各與什麼作用,首先我們來看看磁珠和電感的區別,電感是閉合迴路的一種屬性,多用於電源濾波迴路,而磁珠主要多 用於信號迴路,用於EMC對策磁珠主要用於抑制電磁輻射幹擾,而電感用於這方面則側重於抑制傳導性幹擾。磁珠是用來吸收超高頻信號,象一些RF電 路,PLL,振蕩電路,含超高頻存儲器電路(DDR SDRAM,RAMBUS等)都需要在電源輸入部分加磁珠,兩者都可用於處理EMCEMI問題。

本文引用地址:http://www.eepw.com.cn/article/201709/364010.htm

  磁珠和電感在EMI和EMC電路中關鍵是是對高頻傳導幹擾信號進行抑制,也有抑制電感的作用。但從原理方面來看,磁珠可等效成一個電感,等於還是存在一定的 區別,最大區別在於電感線圈有分布電容。因此,電感線圈就相當於一個電感與一個分布電容並聯。如圖1所示。圖1中,LX為電感線圈的等效電感(理想電 感),RX為線圈的等效電阻,CX為電感的分布電容。

    

  圖1 電感線圈的等效電路圖

  理論上對傳導幹擾信號進行抑制,要求抑制電感的電感量越大越好,但對於電感線圈來說,電感量越大,則電感線圈的分布電容也越大,兩者的作用將會互相抵消。

    

  圖2 普通電感線圈的阻抗與頻率的關係圖

  圖 2是普通電感線圈的阻抗與頻率的關係圖,由圖中可以看出,電感線圈的阻抗開始的時候是隨著頻率升高而增大的,但當它的阻抗增大到最大值以後,阻抗反而隨著 頻率升高而迅速下降,這是因為並聯分布電容的作用。當阻抗增到最大值的地方,就是電感線圈的分布電容與等效電感產生並聯諧振的地方。圖中,L1 > L2 > L3,由此可知電感線圈的電感量越大,其諧振頻率就越低。從圖2中可以看出,如果要對頻率為1MHZ的幹擾信號進行抑制,選用L1倒不如選用L3,因為 L3的電感量要比L1小十幾倍,因此L3的成本也要比L1低很多。

  如果我們還要對抑制頻率進一步提高,那麼我們最後選用的電感線圈就只好是它的最小極限值,只有1圈或不到1圈了。磁珠,即穿心電感,就是一個匝數小於1圈的電感線圈。但穿心電感比單圈電感線圈的分布電容小好幾倍到幾十倍,因此,穿心電感比單圈電感線圈的工作頻率更高。

  穿 心電感的電感量一般都比較小,大約在幾微亨到幾十微亨之間,電感量大小與穿心電感中導線的大小以及長度,還有磁珠的截面積都有關係,但與磁珠電感量關係最 大的還要算磁珠的相對導磁率Uy.圖3、圖4是分別是指導線和穿心電感的原理圖,計算穿心電感時,首先要計算一根圓截面直導線的電感,然後計算結果乘上磁 珠相對導磁率 就可以求出穿心電感的電感量。

    

  圖3 圓截面直導線的電感圖

    

  圖4 磁珠穿心電感圖

  另外,當穿心電感的工作頻率很高時,在磁珠體內還會產生渦流,這相當於穿心電感的導磁率要降低,此時,我們一般都使用有效導磁率。有效導磁率 就是在某個工作頻率之下,磁珠的相對導磁率。但由於磁珠的工作頻率都只是一個範圍,因此在實際應用中多用平均導磁率。

  在低頻時,一般磁珠的相對導磁率都很大(大於100),但在高頻時其有效導磁率只有相對導磁率的幾分之一,甚至幾十分之一。因此,磁珠也有截止頻率的問題, 所謂截止頻率,就是使磁珠的有效導磁率下降到接近1時的工作頻率fc,此時磁珠已經失去一個電感的作用。一般磁珠的截止頻率fc都在30~300MHz之 間,截止頻率的高低與磁珠的材料有關,一般導磁率越高的磁芯材料,其截止頻率fc反而越低,因為低頻磁芯材料渦流損耗比較大。使用者在進行電路設計的時 候,可要求磁芯材料的提供商提供磁芯工作頻率與有效導磁率 的測試數據,或穿心電感在不同工作頻率之下的曲線圖。圖5是穿心電感的頻率曲線圖。

    

  圖5 穿心電感的頻率曲線圖

  磁珠另一個用途就是用來做電磁屏蔽,它的電磁屏蔽效果比屏蔽線的屏蔽效果還要好,這是一般人不太注意的。其使用方法就是讓一雙導線從磁珠中間穿過,那麼當有 電流從雙導線中流過時,其產生的磁場將大部份集中在磁珠體內,磁場不會再向外輻射;由於磁場在磁珠體內會產生渦流,渦流產生電力線的方向與導體表面電力線 的方向正好相反,互相可以抵消,因此,磁珠對於電場同樣有屏蔽作用,即:磁珠對導體中的電磁場有很強的屏蔽作用。

  使用磁珠進行電磁屏蔽的優點是磁珠不用接地,可以免去屏蔽線要求接地的麻煩。用磁珠作為電磁屏蔽,對於雙導線來說,還相當於在線路中接了一個共模抑制電感,對共模幹擾信號有很強的抑制作用。

  從上述我們可以了解到,磁珠和電感在EMC、EMI電路中都能起到抑制的作用,主要是抑制方面的不同,而電感在高頻諧振以後都不能再起電感的作用了,先必需 明白EMI的兩個途徑,即:輻射和傳導,不同的途徑採用不同的抑制方法。前者用磁珠,後者用電感。還需我們注意的地方是共模抑制電感與Y電容的連接位置, 那什麼是共模抑制電感,就是在地線或其它輸入輸出線之間串聯電感,這個電感稱為共模抑制電感,共模抑制電感的一端與機器中的地線(公共端)相連,另一端與 一個Y電容相連,Y電容的另一端與大地相連。這是抑制傳導幹擾的最有效方法。


相關焦點

  • EMI和EMC電路中磁珠和電感起到的不同作用
    磁珠和電感在解決EMI和EMC方面各與什麼作用,首先我們來看看磁珠和電感的區別,電感是閉合迴路的一種屬性,多用於電源濾波迴路,而磁珠主要多 用於信號迴路,用於
  • 也來談談EMI和EMC電路中磁珠和電感的不同作用
    磁珠和電感在解決EMI和EMC方面各與什麼作用,首先我們來看看磁珠和電感的區別,電感本文引用地址:http://www.eepw.com.cn/article/274267.htm  磁 珠和電感在EMI和EMC電路中關鍵是是對高頻傳導幹擾信號進行抑制,也有抑制電感的作用。但從原理方面來看,磁珠可等效成一個電感,等於還是存在一定的 區別,最大區別在於電感線圈有分布電容。因此,電感線圈就相當於一個電感與一個分布電容並聯。如圖1所示。
  • 磁珠和電感在解決EMI和EMC的不同應用
    磁珠和電感在解決EMI和EMC方面的作用有什麼區別,各有什麼特點,是不是使用磁珠的效果會更好一點呢?
  • 濾波電容器共模電感和磁珠在EMC設計電路中作用及原理
    濾波電容器、共模電感、磁珠在EMC設計電路中是常見的身影,也是消滅電磁幹擾的三大利器。 穿心電容之所以能有效地濾除高頻噪聲,是因為穿心電容不僅沒有引線電感造成電容諧振頻率過低的問題,而且穿心電容可以直接安裝在金屬面板上,利用金屬面板起到高頻隔離的作用。但是在使用穿心電容時,要注意的問題是安裝問題。穿心電容最大的弱點是怕高溫和溫度衝擊,這在將穿心電容往金屬面板上焊接時造成很大困難。許多電容在焊接過程中發生損壞。
  • EMC設計重點-電感、電容、磁珠
    濾波電容器、共模電感、磁珠在EMC設計電路中是常見的身影,也是消滅電磁幹擾的三大利器。對於這這三者在電路中的作用,相信還有很多工程師搞不清楚。
  • 詳解消滅EMC的三大利器:電容器/電感/磁珠
    濾波電容器、共模電感、磁珠在EMC設計電路中是常見的身影,也是消滅電磁幹擾的三大利器。 對於這三者在電路中的作用,相信還有很多工程師搞不清楚,文章從設計中詳細分析了消滅EMC三大利器的原理。
  • 磁珠和電感的區別
    􀁺 EMI 的兩個途徑:輻射和傳導,不同的途徑採用不同的抑制方法。輻射用磁珠,傳導用電感。􀁺 一匝以上的線圈習慣稱為電感線圈,少於一匝(導線直通磁環)的線圈習慣稱之為磁珠。用途由起所需電感量決定。在電子設備的 PCB板電路中會大量使用感性元件和EMI濾波器元件。
  • 磁珠與電感的區別及其作用與用途
    而且電感在高頻諧振以後都不能再起電感的作用了,先必需明白EMI的兩個途徑,即:輻射和傳導,不同的途徑採用不同的抑制方法。前者用磁珠,後者用電感。對於扳子的 IO部分,是不是基於EMC的目的可以用電感將IO部分和扳子的地進行隔離,比如將USB的地和扳子的地用10uH的電感隔離可以防止插拔的噪聲幹擾地平面?電感一般用於電路的匹配和信號質量的控制上。在模擬地和數字地結合的地方用磁珠。
  • 與電感這麼相似,為什麼你的電路只能用磁珠?
    使用貼片磁珠和貼片電感的原因:是使用貼片磁珠還是貼片電感主 要還在於應用。在諧振電路中需要使用貼片電感。為解決這一弊病,可在濾波器的進線上使用鐵氧體磁環或磁珠套,利用滋環或磁珠對高 頻信號的渦流損耗,把高頻成分轉化 為熱損耗。因此磁環和磁珠實際上對高頻成分起吸收作用,所以有時也稱之為吸收濾波器。  不同的鐵氧體抑制元件,有不同的最佳抑制頻率範圍。通常磁導率越高,抑制的頻率就越低。此外,鐵氧體的體積越大,抑制效果越好。
  • 電感、磁珠和零歐電阻的區別
    因此在100MHz時,此電感可以視為開路(open circuit)。在100MHz時,若讓一個信號通過此電感,將會造成此信號品質的下降。磁珠(ferrite bead)的材料是鐵鎂或鐵鎳合金,這些材料具有有很高的電阻率和磁導率,在高頻率和高阻抗下,電感內線圈之間的電容值會最小。
  • 硬體設計:電容電感磁珠總結
    .在模擬地和數字地結合的地方用磁珠.磁珠有很高的電阻率和磁導率,他等效於電阻和電感串聯,但電阻值和電感值都隨頻率變化。他比普通的電感有更好的高頻濾波特性,在高頻時呈現阻性,所以能在相當寬的頻率範圍內保持較高的阻抗,從而提高調頻濾波效果。作為電源濾波,可以使用電感。磁珠的電路符號就是電感但是型號上可以看出使用的是磁珠在電路功能上,磁珠和電感是原理相同的,只是頻率特性不同罷了磁珠由氧磁體組成,電感由磁心和線圈組成,磁珠把交流信號轉化為熱能,電感把交流存儲起來,緩慢的釋放出去。
  • 電路設計:上/下拉電阻、串聯匹配/0Ω電阻、磁珠、電感應用
    另外,0歐姆電阻比過孔的寄生電感小,而且過孔還會影響地平面(因為要挖孔),還有就是不同尺寸0歐電阻允許通過電流不同,一般0603的1A,0805、的2A,所以不同電流會選用不同尺寸的。還有就是為磁珠、電感等預留位置時,得根據磁珠、電感的大小還做封裝,所以0603、0805等不同尺寸的都有了。
  • EMC設計電路中消滅電磁幹擾的三大利器
    對於這這三者在電路中的作用,相信還有很多工程師搞不清楚。本文從設計設計中,詳細分析了消滅EMC三大利器的原理。 穿心電容之所以能有效地濾除高頻噪聲,是因為穿心電容不僅沒有引線電感造成電容諧振頻率過低的問題,而且穿心電容可以直接安裝在金屬面板上,利用金屬面板起到高頻隔離的作用。但是在使用穿心電容時,要注意的問題是安裝問題。穿心電容最大的弱點是怕高溫和溫度衝擊,這在將穿心電容往金屬面板上焊接時造成很大困難。許多電容在焊接過程中發生損壞。
  • EMC中的電感器2:鐵氧體磁珠
    本文介紹鐵氧體磁珠。鐵氧體磁珠是磁性成分,在抑制高頻噪聲和防止有害輻射方面起著關鍵作用。
  • 高速電路設計中電感有何作用?
    以電源為例,DC/DC直流電源是通過不斷的開合、和MOSFET管以形成所需的電源電壓。開、合的過程含有大量的交流分量,而這些交流分量是直流電源所不需要的。根據公式Z=jwL,頻率越高,電感阻抗越大,反之電感越小,電感阻抗越小。所以,電感天生就具有通直流、阻交流的能力,既電感的作用之一是:通直流、阻交流。
  • 數字電路與模擬電路隔離用0歐姆還是磁珠?
    問:電路設計中用0歐電阻還是磁珠來隔離數字地和模擬地?本文引用地址:http://www.eepw.com.cn/article/201807/384422.htm我做了個實驗板,不太清楚應該用0歐電阻還是磁珠來進行數字地和模擬地的隔離?板子上的晶振有:24MHz,50MHz,27MHz等,板子入口電壓5V,晶片需求電壓軌:3.3V,2.5V,1.5V,1.2V.。請高手指點!
  • 不同的電阻可在電路設計中發揮不同的作用
    不同類型電阻其特性參數都有一定的差異,在電路使用時需要考慮的點也不一樣。對於剛接觸電路設計的工程師來說很可能會忽略電阻的某些特殊的參數,導致產品的穩定性和可靠性得不到保證。正確的理解電阻各個參數及選型的注意事項,且全面的理解電阻在電路中起到的真正作用,才能夠從底層最基本的電路設計上保證產品的優質性。
  • 一文讀懂EMC磁珠到底有什麼特性?
    磁珠(Ferrite bead)的等效電路是一個DCR電阻串聯一個電感並聯一個電容和一個電阻。DCR是一個恆定值,但後面三個元件都是頻率的函數,也就是說它們的感抗,容抗和阻抗會隨著頻率的變化而變化,當然它們阻值,感值和容值都非常小。
  • 磁珠在開關電源電磁兼容設計中的應用
    因此,它的等效電路為由電感L和電阻R組成的串聯電路,L和R都是頻率的函數。當導線穿過這種鐵氧體磁芯時,所構成的電感阻抗在形式上是隨著頻率的升高而增加,但是在不同頻率時其機理是完全不同的。  (3) 剩餘電感極小,電路穩定時損耗很小。  (4) 與鐵氧體製品的性能絕然不同。  (5) 只要避免磁飽和,可作為超小型、高電感的電感元件使用。  (6) 可以作為低損耗的高性能可飽和鐵芯用於控制和產生振蕩。
  • 從EMC角度考慮常用電路設計及PCB設計
    溫升大小由結構散熱和效率決定;輸出紋波除了採用輸出濾波外,輸出濾波電容的選取也很關鍵:大電容一般採用低ESR電容,小電容採用0.1UF和1000pF共用。電源電路設計中,電磁兼容設計是關鍵設計。主要涉及的電磁兼容設計有:傳導發射和浪湧。 傳導發射設計一般採用輸入濾波器方式。