淺談PCB中的去耦電容設計

2021-01-08 電子發燒友
打開APP
淺談PCB中的去耦電容設計

物聯產品&電 發表於 2021-01-07 14:30:28

旁路和去耦是指防止有用能量從一個電路傳到另一個電路中,並改變噪聲能量的傳輸路徑,從而提高電源分配網絡的品質。它有三個基本概念:電源、地平面,元件和內層的電源連接。

去耦是當器件進行高速開關時,把射頻能量從高頻器件的電源端洩放到電源分配網絡。去耦電容也為器件和元件提供一個局部的直流源,這對減小電流在板上傳播浪湧尖峰很有作用。

在數字電路及IC控制器電路中,必須要進行電源去耦。當元件開關消耗直流能量時,沒有去耦電容的電源分配網絡中將發生一個瞬時尖峰。這是因為電源供電網絡中存在著一定的電感,而去耦電容能提供一個局部的沒有電感的或者說很小電感的電源。通過去耦電容,把電壓保持在一個恆定的參考點,阻止了錯誤的邏輯轉換,同時還能減小噪聲的產生,因為它能提供給高速開關電流一個最小的迴路面積來代替元件和遠端電源間的大的回流面積,如下圖所示。

從圖示中可以看到,PCB中的去耦電容可大大減小電流環路面積。去耦電容的另一個作用是提供局部的能量儲存源,可以減小電源供電的輻射路徑。電路中的RF能量的產生和I·A·f成正比的,這裡I是回流的電流;A是迴路的面積;f是電流的頻率。由於電流和頻率在選擇器件時已確定,要想減小輻射,那麼減小電流的迴路面積變得非常重要。在有去耦電容的電路中,電流在小的RF電流迴路中流動,從而減小RF能量。可以通過放置去耦電容可以得到小的迴路面積。

如上圖所示,ΔU是L·di/dt在地線上產生的噪聲,它在去耦電容中流動。這個ΔU驅動著板上的地結構和分配系統中的共模電壓流向整個電路板。因此減小ΔU與地阻抗有關,也與去耦電容的用法及位置有關。

去耦也是克服物理的和時序的約束的一種方法,它是通過在信號線和電源線及平面間提供一個低阻抗的電源來實現的。在頻率升高到自諧振點之前,隨著頻率的升高,去耦電容的阻抗會越來越低,這樣高頻噪聲會有效的從信號線上洩放,這時剩下的低頻輻射能量就沒有什麼影響了。根據去耦電容的原理,如果增加從電源線吸收能量的難度,就會使大部分能量從去耦電容中獲得,充分發揮去耦電容的作用,同時電源線上也將產生更小的di/dt噪聲。根據這樣的方法,可以人為增加電源線上的阻抗。

在IC電源供電線上串聯鐵氧體磁珠是一種常用的方法,由於鐵氧體磁珠對高頻電流呈現較大的阻抗,因此增強了電源去耦電容的效果。

旁路是把不必要的共模RF能量從元件或線纜中洩放掉。它的實質是產生一個交流支路來把不希望的能量從易受影響的區域洩放掉。另外,它還提供濾波功能。其濾波的能力顯然還是其自身的帶寬的限制。有時把旁路也統稱為濾波的設計。旁路或濾波通常應用在電源與地之間、信號與地之間或者不同的地之間,它與去耦有所不同。但是對於電容的使用方法來說是一樣的,因此通常描述有關電容的特性都適用於去耦和旁路。

儲能是當所用的信號引腳在最大容量負載下同時開關時,用來保持提供給器件的恆定的直流電壓和電流。它還能阻止由於器件的di/dt電流浪湧而引起的電源跌落。如果說去耦是高頻的範疇,那麼儲能可以理解為低頻的範疇。
編輯:hfy

打開APP閱讀更多精彩內容

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容圖片侵權或者其他問題,請聯繫本站作侵刪。 侵權投訴

相關焦點

  • PCB設計時,去耦電容該怎麼放?
    電容去耦的一個重要問題是電容的去耦半徑。大多數資料中都會提到電容擺放要儘量靠近晶片,多數資料都是從減小迴路電感的角度來談這個擺放距離問題。這就要求噪聲源距離電容儘可能的近,要遠小於。實際應用中,這一距離最好控制在(λ/40 -λ/50)之間,這是一個經驗數據。
  • PCB布局時如何擺放及安裝去耦電容
    尖峰電源電流的波形隨所用器件的類型和輸出端所接的電容負載而異。產生尖峰電流的主要原因是:輸出級的T3、T4管短設計內同時導通。在與非門由輸出低電平轉向高電平的過程中,輸入電壓的負跳變在T2和T3的基極迴路內產生很大的反向驅動電流,由於T3的飽和深度設計得比T2大,反向驅動電流將使T2首先脫離飽和而截止。
  • PCB布局時去耦電容擺放經驗分享
    打開APP PCB布局時去耦電容擺放經驗分享 佚名 發表於 2017-02-09 09:36:54 容值最小的電容,有最高的諧振頻率,去耦半徑最小,因此放在最靠近晶片的位置。容值稍大些的可以距離稍遠,最外層放置容值最大的。但是,所有對該晶片去耦的電容都儘量靠近晶片。 下面的圖1就是一個擺放位置的例子。本例中的電容等級大致遵循10倍等級關係。
  • PCB布局時去耦電容的擺放,你造嗎?
    去耦電容是電路中裝設在元件的電源端的電容,此電容可以提供較穩定的電源,同時也可以降低元件耦合到電源端的噪聲,間接可以減少其他元件受此元件噪聲的影響。數字電路中典型的去耦電容值是0.1μF。這個電容的分布電感的典型值是5μH。0.1μF的去耦電容有5μH的分布電感,它的並行共振頻率大約在7MHz左右,也就是說,對於10MHz以下的噪聲有較好的去耦效果,對40MHz以上的噪聲幾乎不起作用。
  • 去耦電容的選擇、容值計算和pcb布局布線詳解
    去耦電容的應用的非常廣泛,在電路應用過程中對於去耦電容的容值計算和PCB電路布局布線有一些我們必須要了解的技巧。   有源器件在開關時產生的高頻開關噪聲將沿著電源線傳播。去耦電容的主要功能就是提供一個局部的直流電源給有源器件,以減少開關噪聲在板上的傳播,和將噪聲引導到地。
  • 去耦電容和bypass電容、濾波電容的原理和區別
    本文引用地址:http://www.eepw.com.cn/article/201710/368863.htm  在這裡我們主要給大家介紹bypass電容(旁路電容)與去耦電容、濾波電容、儲能電容的區別,這在電子設計中非常重要。  去耦電容與旁路電容有什麼區別?
  • 去耦電容和旁路電容詳解
    在電子電路中,去耦電容和旁路電容都是起到抗幹擾的作用,電容所處的位置不同,稱呼就不一樣了
  • 如何選擇合適的去耦電容 常見的去耦電容資料介紹
    打開APP 如何選擇合適的去耦電容 常見的去耦電容資料介紹 Digikey 發表於 2020-12-03 11:25:53 去耦電容是電路中裝設在元件的電源端的電容,此電容可以提供較穩定的電源,同時也可以降低元件耦合到電源端的噪聲,間接可以減少對其他元件的噪聲影響。
  • 電容的去耦半徑計算
    電容去耦的一個重要問題是電容的去耦半徑。大多數資料中都會提到電容擺放要儘量靠近晶片,多數資料都是從減小迴路電感的角度來談這個擺放距離問題。確實,減小電感是一個重要原因,但是還有一個重要的原因大多數資料都沒有提及,那就是電容去耦半徑問題。如果電容擺放離晶片過遠,超出了它的去耦半徑,電容將失去它的去耦的作用。   理解去耦半徑最好的辦法就是考察噪聲源和電容補償電流之間的相位關係。
  • 關於去耦電容的選擇
    去耦電容的選擇不存在與頻率的精確對應關係,理論上越大越好,但現實中所有器件都不是理想器件,不論何種電容,ESL、ESR都是必然存在的,於是實際電容的頻響曲線明顯呈非線性,僅在一定頻率區間內基本符合純電容的理論計算結果
  • 深刻談談旁路電容和去耦電容
    去耦電容和旁路電容   去耦電容就是起到一個小電池的作用,滿足電路中電流的變化,避免相互間的耦合幹擾。關於這個的理解可以參考電源掉電,Bulk電容的計算,這是與之類似的。 旁路電容實際也是去耦合的,只是旁路電容一般是指高頻噪聲旁路,也就是給高頻的開關噪聲提高一條低阻抗洩防途徑。
  • 去耦電容和濾波電容的區別
    打開APP 去耦電容和濾波電容的區別 姚遠香 發表於 2019-07-03 14:14:38   濾波電容:這是我們通常用在電源整流以後的電容,它是把整流電路交流整 流成脈動直流,通過充放電加以平滑的電容,這種電容一般都是電解電容,而且容量較大,在微法級。
  • 深入晶片內部,理解去耦電容的作用
    尖峰電源電流的波形隨所用器件的類型和輸出端所接的電容負載而異。       產生尖峰電流的主要原因是:       輸出級的T3、T4管短設計內同時導通。在與非門由輸出低電平轉向高電平的過程中,輸入電壓的負跳變在T2和T3的基極迴路內產生很大的反向驅動電流,由於T3的飽和深度設計得比T2大,反向驅動電流將使T2首先脫離飽和而截止。
  • 旁路、去耦、Bulk以及耦合電容的作用與區別
    在硬體設計中有很多種電容,各種電容的功能、種類和電容容值各不相同。按照功能劃分的話,最重要的幾種電容分別稱為:去耦電容(De-coupling Capacitor),旁路電容(Bypass Capacitor)、Bulk電容以及耦合電容(Coupling Capacitor)。
  • 如何畫雙層pcb板_雙層pcb板布線規則(操作技巧與案例分析)
    雙層pcb,意思是在一塊pcb板子的頂層和底層都畫導線。雙面板解決了單面板中因為布線交錯的難點(可以通過孔導通到另一面),即正反兩面都有布線,元器件可以焊接在正面,也可以焊接在反面,雙層線路板這種電路板的兩面都有元器件和布線,不容質疑,設計雙層PCB板的難度要高更多,下面我們來分析下雙層pcb板布線規則並分享給大家如何畫雙層pcb板。
  • 從儲能、阻抗兩種不同視角解析電容去耦原理
    儲能電容的存在使負載消耗的能量得到快速補充,因此保證了負載兩端電壓不至於有太大變化,此時電容擔負的是局部電源的角色。  從儲能的角度來理解電源退耦,非常直觀易懂,但是對電路設計幫助不大。從阻抗的角度理解電容退耦,能讓我們設計電路時有章可循。實際上,在決定電源分配系統的去耦電容量的時候,用的就是阻抗的概念。  2、從阻抗的角度來理解退耦原理。
  • 去耦電容和旁路電容不可忽視的重要作用!!
    相信大家經常可以看到去耦(decouple)電容和旁路(bypass)電容這兩種名稱。但是它們都不是電容的類型,而是設計者根據電容所起的作用不同而進行的認為劃分。下面介紹這兩種電容的作用:1、去耦電容的作用其實就是為了保證器件穩定工作而給器件電源提供的本地「小池塘」。
  • 去耦電路中,耦合電容容量越大越好嗎?
    去耦電路中,耦合電容容量越大越好嗎?耦合常數是指耦合電容值與第二級輸入阻抗值乘積對應的時間常數。 將電源中的高頻紋波去除,將多級放大器的高頻信號通過電源相互串擾的通路切斷。
  • 分享去耦電容的有效使用方法和應用
    打開APP 分享去耦電容的有效使用方法和應用 發表於 2019-08-22 11:02:03 去耦電容的有效使用方法 去耦電容有效使用方法的要點大致可以分為兩種。
  • 答題|當刪則刪,這種電容本不該出現
    如何發揮pF級電容的去耦作用?大家都知道要問題的關鍵在於減少電容的安裝電感。怎麼減?一方面,作為分立器件,封裝內的去耦電容(OPD,On-Package Decap)離DIE的距離最近,因此,引線電感可以做的比較小,另一方面,受空間局限,OPD電容封裝普遍較小,因此寄生電感也比較小。