初中數學知識點:三角形

2020-11-26 中考網

  初中三角形知識點

 

  一、三角形的有關概念

 

  1.三角形:由不在同一直線上的三條線段首尾順次相接組成的圖形叫三角形。

 

  三角形的特徵:①不在同一直線上;②三條線段;③首尾順次相接;④三角形具有穩定性。

 

  2.三角形中的三條重要線段:角平分線、中線、高

 

  (1)角平分線:三角形的一個內角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。

 

  (2)中線:在三角形中,連接一個頂點和它的對邊中點的線段叫做三角形的中線。

 

  (3)高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。

 

  說明:①三角形的角平分線、中線、高都是線段;

 

  ②三角形的角平分線、中線都在三角形內部且都交於一點;三角形的高可能在三角形的內部(銳角三角形)、外部(鈍角三角形),也可能在邊上(直角三角形),它們(或延長線)相交於一點。

 

  二、三角形的邊和角

 

  三邊關係:三角形中任意兩邊之和大於第三邊。

 

  由三邊關係可以推出:三角形任意兩邊之差小於第三邊。

 

  三、三角形內、外角的關係

 

  1.三角形的內角和等於180°。

 

  2.直角三角形的兩個銳角互餘。

 

  3.三角形的一外角等於和它不相鄰的兩個內角之和,三角形的一個外角大於任何一個和它不相鄰的內角。

 

  4.三角形的外角和為360°。

 

  四、等腰三角形與直角三角形

 

  1.等腰三角形:有兩條邊相等的三角形稱為等腰三角形,相等的兩邊叫做等腰三角形的腰,三條邊都相等的三角形叫做等邊三角形(或正三角形)。

 

  說明:等邊三角形是等腰三角形的特殊情況。

 

  2.直角三角形:有一個角是直角的三角形是直角三角形,它的兩個銳角互餘。

 

  五、三角形的分類:

 

 

  六、三角形的面積:

 

  1.一般計算公式;

 

  2.性質:等底等高的三角形面積相等。

 

  七、初中三角形中線定理_

 

  中線定理又稱阿波羅尼奧斯定理,是歐氏幾何的定理,表述三角形三邊和中線長度關係。

 

  定理內容:三角形一條中線兩側所對邊平方和等於底邊的一半平方與該邊中線平方和的2倍。

 

  中線的定義

 

  任何三角形都有三條中線,而且這三條中線都在三角形的內部,並交於一點

 

  由定義可知,三角形的中線是一條線段。

 

  由於三角形有三條邊,所以一個三角形有三條中線。

 

  且三條中線交於一點。這點稱為三角形的重心。

 

  每條三角形中線分得的兩個三角形面積相等。

 

  八、三角形的內角和

 

  在同一平面內,由一些不在同一條直線上的線段首位順次相接所圍成的封閉圖形叫做多邊形.組成多變形的那些線段叫做多邊形的邊.相鄰兩邊的公共端點叫做多邊形的頂點.多變形相鄰兩邊所夾的角叫做多邊形的內角,簡稱多邊形的角.多變形的角的一邊與另一邊的反向延長線組成的角叫做多邊形的外角.

 

  三角形內角和定理:三角形三個內角和等於180

 

  在原來圖形上添畫的線叫做輔助線

 

  依據三角形內角的特徵,對三角形進行分類:三個角都是銳角的三角形叫做銳角三角形;有一個角是直角的三角形叫做直角三角形;有一個角是鈍角的三角形叫做鈍角三角形;銳角三角形和鈍角三角形統稱斜三角形.

 

  在直角三角形中,夾直角的兩邊叫做直角邊,直角的對邊叫做斜邊.

 

  九、三角形公式

 

  解斜三角形: 在三角形ABC中,角A,B,C的對邊分別為a,b,c. 則有

 

  (1)正弦定理 a/SinA=b/SinB= c/SinC=2R (R為三角形外接圓半徑)

 

  (2)餘弦定理 a^2=b^2+c^2-2bc*CosA b^2=a^2+c^2-2ac*CosB c^2=a^2+b^2-2ab*CosC 註:勾股定理其實是餘弦定理的一種特殊情況。

 

  (3)餘弦定理變形公式 cosA=(b^2+C^2-a^2)/2bC cosb=(a^2+c^2-b^2)/2aC cosC=(a^2+b^2-C^2)/2ab

 

  斜三角形的解法: 已知條件 定理應用 一般解法 一邊和兩角 (如a、B、C) 正弦定理 由A+B+C=180˙,求角A,由正弦定理求出b與c,在有解時 有一解。 兩邊和夾角 (如a、b、c) 餘弦定理 由余弦定理求第三邊c,由正弦定理求出小邊所對的角,再 由A+B+C=180˙求出另一角,在有解時有一解。

 

  三邊 (如a、b、c) 餘弦定理 由余弦定理求出角A、B,再利用A+B+C=180˙,求出角C 在有解時只有一解。 兩邊和其中一邊的對角 (如a、b、A) 正弦定理 由正弦定理求出角B,由A+B+C=180˙求出角C,在利用正 弦定理求出C邊,可有兩解、一解或無解。

 

  勾股定理(畢達哥拉斯定理) 內容:在任何一個直角三角形中,兩條直角邊長的平方之和一定等於斜邊長的平方。 幾何語言:若△ABC滿足∠ABC=90°,則AB2+BC2=AC2 勾股定理的逆定理也成立,即兩條邊長的平方之和等於第三邊長的平方,則這個三角形是直角三角形 幾何語言:若△ABC滿足,則∠ABC=90°。

 

  射影定理(歐幾裡得定理) 內容:在任何一個直角三角形中,作出斜邊上的高,則斜邊上的高的平方等於高所在斜邊上的點到不是兩直角邊垂足的另外兩頂點的線段長度的乘積。

 

  幾何語言:若△ABC滿足∠ABC=90°,作BD⊥AC,則BD2=AD×DC 射影定理的拓展:若△ABC滿足∠ABC=90°,作BD⊥AC, (1)AB2=BD·BC (2)AC2;=CD·BC (3)ABXAC=BCXAD

 

  正弦定理內容:在任何一個三角形中,每個角的正弦與對邊之比等於三角形面積的兩倍與三邊邊長和的乘積之比 幾何語言:在△ABC中,sinA/a=sinB/b=sinC/c=2S三角形/abc 結合三角形面積公式,可以變形為a/sinA=b/sinB=c/sinC=2R(R是外接圓半徑)

 

  餘弦定理 內容:在任何一個三角形中,任意一邊的平方等於另外兩邊的平方和減去這兩邊的2倍乘以它們夾角的餘弦 幾何語言:在△ABC中,a2=b2+c2-2bc×cosA 此定理可以變形為:cosA=(b2+c2-a2)÷2bc忽略構成三角形的條件。

 

  常見考法

 

  (1)考查三角形的性質和概念;(2)根據三角形內角和以及內、外角關係,給出已知兩角,來求第三個角;(3)根據三角形內、外角的關係,比較兩角大小的;(4)利用三邊關係判斷三條線段能否組成三角形或給出三角形的兩邊長,來確定第三邊長的取值範圍,亦或證明線段之間的不等關係。

 

新初三快掃碼關注

 

中考網微信公眾號

 

每日推送學習技巧,學科知識點

 

助你迎接2020年中考!

 

   歡迎使用手機、平板等行動裝置訪問中考網,2020中考一路陪伴同行!>>點擊查看

相關焦點

  • 2021年初中七年級數學知識點:三角形易錯知識點
    中考網整理了關於2021年初中七年級數學知識點:三角形易錯知識點,希望對同學們有所幫助,僅供參考。   易錯點1:三角形的概念以及三角形的角平分線,中線,高線的特徵與區別。   易錯點2:三角形三邊之間的不等關係,注意其中的「任何兩邊」。求最短距離的方法。
  • 2021年初中七年級數學知識點:三角形概念
    中考網整理了關於2021年初中七年級數學知識點:三角形概念,希望對同學們有所幫助,僅供參考。   1.三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。   2.三角形的三邊關係:三角形任意兩邊的和大於第三邊,任意兩邊的差小於第三邊。
  • 初中階段數學三角形相關知識點匯總,超全
    初中數學中,三角形是必考考點,而有關三角形的知識點也有很多,全等三角形、三角形角平分線、垂直平分線、等腰三角形和等邊三角形、直角三角形、勾股定理等,這些知識點每個都會成為考點,而在解題之前,首先要了解與之相關的性質和定理,今天,黃小將就為大家整理了初中階段有關三角形的知識點,一起來看看吧。
  • 2021年初中七年級數學知識點:全等三角形
    中考網整理了關於2021年初中七年級數學知識點:全等三角形,希望對同學們有所幫助,僅供參考。   (一)、基本概念   1、「全等」的理解全等的圖形必須滿足:(1)形狀相同的圖形;(2)大小相等的圖形;   即能夠完全重合的兩個圖形叫全等形。同樣我們把能夠完全重合的兩個三角形叫做全等三角形。
  • 初中數學公式:三角形面積公式
    中考網整理了關於初中數學公式:三角形面積公式,希望對同學們有所幫助,僅供參考。   由不在同一直線上的三條線段首尾順次連接所組成的封閉圖形叫做三角形。平面上三條直線或球面上三條弧線所圍成的圖形。三條直線所圍成的圖形叫平面三角形;三條弧線所圍成的圖形叫球面三角形,也叫三邊形。
  • 初中數學三角形相似模型大總結(值得收藏)
    三角形相似是初中數學裡非常重要的知識點,是中考中一定會涉及的考點之一。三角形相似的判定和應用題型千變萬化,但「萬變不離其宗」,常用的一共有以下8種模型。1、8字形模型2、反8字形模型3、A字形模型4、反A字形模型5、共邊反A字形模型6、剪刀反A字形模型7、一線三等角模型8、一線三垂直模型【模型總結】8種具體模型實際上可以分為三個大類,如下面表格所示:【應用提示】三角形相似的實際應用中遇到的模型基本上是屬於上面
  • 中考數學必備知識點,相似三角形的判定和應用
    初一和初二我們都對三角形這個知識點有所學習,初一的時候我們學習了三角形的全等,初二我們學習了一些特殊的三角形比如等腰,直角這類的三角形的性質和應用,初三我們也會學習一個新的三角形知識點,那就是三角形的相似。學習這個知識點的時候一定要注意的是,相似三角形判定條件和全等三角形判定千萬不要混淆了。
  • 2019中考數學知識點:直角三角形
    1、有一個角為90°的三角形,叫做直角三角形。   直角三角形可用Rt△表示,如直角三角形ABC寫作Rt△ABC。   直角三角形是一種特殊的三角形,它除了具有一般三角形的性質外,具有一些特殊的性質:2、性質性質1:直角三角形兩直角邊的平方和等於斜邊的平方   性質2:在直角三角形中,兩個銳角互餘   性質3:在直角三角形中,斜邊上的中線等於斜邊的一半。(即直角三角形的外心位於斜邊的中點,外接圓半徑R=C/2)。
  • 2021年初中七年級數學知識點:四邊形易錯知識點
    中考網整理了關於2021年初中七年級數學知識點:四邊形易錯知識點,希望對同學們有所幫助,僅供參考。   易錯點1:平行四邊形的性質和判定,如何靈活、恰當地應用。三角形的穩定性與四邊形不穩定性。   易錯點2:平行四邊形注意與三角形面積求法的區分。平行四邊形與特殊平行四邊形之間的轉化關係。
  • 2021初中八年級數學公式:解斜三角形公式
    中考網整理了關於2021初中七年級數學公式:解斜三角形公式,希望對同學們有所幫助,僅供參考。   解斜三角形   在三角形ABC中,角A,B,C的對邊分別為a,b,c. 則有   (1)正弦定理   a/SinA=b/SinB= c/SinC=2R (R為三角形外接圓半徑)。
  • 2019年初中數學知識點之三角函數攻克口訣
    新一輪中考複習備考周期正式開始,中考網為各位初三考生整理了中考五大必考學科的知識點,主要是對初中三年各學科知識點的梳理和細化,幫助各位考生理清知識脈絡,熟悉答題思路,希望各位考生可以在考試中取得優異成績!下面是《2019年初中數學知識點之三角函數攻克口訣》,僅供參考!
  • 2021年初中七年級數學定理:直角三角形定理
    中考網整理了關於2021年初中七年級數學定理:直角三角形定理,希望對同學們有所幫助,僅供參考。   定理:在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半   判定定理:直角三角形斜邊上的中線等於斜邊上的一半   勾股定理:直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a^2+b^2=c^2   勾股定理的逆定理:如果三角形的三邊長a、b、c有關係a^2+b^2=c^2,那麼這個三角形是直角三角形
  • 2021年初中七年級數學定理:相似三角形定理
    中考網整理了關於2021年初中七年級數學定理:相似三角形定理,希望對同學們有所幫助,僅供參考。   相似三角形定理:平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似   相似三角形判定定理:   1.兩角對應相等,兩三角形相似(ASA)   2.兩邊對應成比例且夾角相等,兩三角形相似(SAS)   直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似
  • 2021初中七年級數學知識點:三角函數的恆等式
    中考網整理了關於2021初中七年級數學知識點:三角函數的恆等式,希望對同學們有所幫助,僅供參考。   數學上,恆等式就是無論其變量如何取值,等式永遠成立的算式。   三角函數的恆等式   任意三角形的面積公式(海倫公式):S^2=p(p-a)(p-b)(p-c),p=(a+b+c)/2,a.b.c為三角形三邊。
  • 新課標:初中數學全等三角形證明題50道!考試必考,務必列印收藏
    新課標:初中數學全等三角形證明題50道!考試必考,務必列印收藏隨著新課標的不斷實施,初中各科的教材也是發生了翻天覆地的變化,以數學這門學科為例,原先的話對全等三角形這部分知識點考察甚少,而現在的話不僅在選擇、填空題當中有所出現,在綜合解答題當中也是經常考察的。以解答題的前兩道為例,幾乎都是對全等三角形的一個考察,那麼這部分試題應該如何解答呢?
  • 2021年初中七年級數學知識點:四邊形
    中考網整理了關於2021年初中七年級數學知識點:四邊形,希望對同學們有所幫助,僅供參考。   易錯點1:平行四邊形的性質和判定,如何靈活、恰當地應用。三角形的穩定性與四邊形不穩定性。   易錯點2:平行四邊形注意與三角形面積求法的區分。平行四邊形與特殊平行四邊形之間的轉化關係。
  • 初中數學知識點:三角形的中線定理
    中線定理又稱阿波羅尼奧斯定理,是歐氏幾何的定理,表述三角形三邊和中線長度關係。     定理內容:三角形一條中線兩側所對邊平方和等於底邊的一半平方與該邊中線平方和的2倍。     中線的定義     任何三角形都有三條中線,而且這三條中線都在三角形的內部,並交於一點     由定義可知,三角形的中線是一條線段。     由於三角形有三條邊,所以一個三角形有三條中線。     且三條中線交於一點。這點稱為三角形的重心。
  • 初中數學知識點:相似三角形判定
    對應角相等,對應邊成比例的兩個三角形叫做相似三角形。     判定定理1:如果一個三角形的兩個角與另一個三角形的兩個角對應相等,那麼這兩個三角形相似(AA)     判定定理2:如果兩個三角形的兩組對應邊成比例,並且對應的夾角相等,那麼這兩個三角形相似(SAS)     判定定理3:如果兩個三角形的三組對應邊成比例,那麼這兩個三角形相似(SSS)
  • 杭州中考數學怎麼學,初中數學需要注意哪些,高能知識點
    #12月跨年衝刺計劃#作為教育領域初中數學老師,對於學習初中數學有些自己看法。初中數學主要的難點在於函數和幾何部分,但是主要問題集中在運算速度和運算準確性上面,所有針對這幾方面進行自己的闡述。第一部分:運算是基礎也是題目是否能夠繼續進行下去的支柱,並非沒有思路,而是有了思路卻沒有辦法運算下去,或者乾脆就是錯的。這時候要提出要求和針對性的訓練。
  • 初中數學知識點:三角形的有關概念
    1.三角形:由不在同一直線上的三條線段首尾順次相接組成的圖形叫三角形。     三角形的特徵:①不在同一直線上;②三條線段;③首尾順次相接;④三角形具有穩定性。     2.三角形中的三條重要線段:角平分線、中線、高     (1)角平分線:三角形的一個內角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。     (2)中線:在三角形中,連接一個頂點和它的對邊中點的線段叫做三角形的中線。