-
科學家發現鐵基超導體大同位素效應
科學家發現鐵基超導體大同位素效應
-
它真的會變成現實 中科院院士陳仙輝做客南渝中學
昨日(20日),「南渝講壇」第八期有幸邀請到陳仙輝院士為南渝全體師生們作「神奇的超導和應用」講座。他從運用開始說起,帶領著孩子們在物理的世界裡暢遊,他告訴孩子們,保持夢想,才有讓它變成現實的可能。陳仙輝和南渝中學校領導參觀孩子們一手打造的耕讀園陳院士是中國科學技術大學
-
中科大超導研究團隊在鐵基高溫超導體研究中取得重要進展
中科大超導研究團隊在鐵基高溫超導體研究中取得重要進展 我校合肥微尺度物質科學國家研究中心和物理系中科院強耦合量子材料物理實驗室陳仙輝、吳濤等人組成的超導研究團隊近日在鐵基高溫超導體研究中取得重要進展
-
...譜學研究新進展:三維原子尺度上測定鐵基超導材料的同位素效應
近日,中國科大國家同步輻射實驗室吳自玉教授領導的研究小組和陳仙輝領導的小組利用X射線吸收譜學,在三維原子尺度上研究了鐵基超導材料的同位素效應,取得了重要進展。這一成果發表在4月29日自然出版集團(NPG)的Scientific Reports(科學報告)上。 自2008年鐵基超導材料被發現以來,一直是凝聚態物理的重要研究熱點之一。
-
40K以上鐵基高溫超導體的發現及若干基本物理性質研究
完成人:趙忠賢(中國科學院物理研究所),陳仙輝(中國科學技術大學),王楠林(中國科學院物理研究所),聞海虎(中國科學院物理研究所),方忠(中國科學院物理研究所) 推薦單位:中國科學院 超導是21世紀能源領域戰略性的技術儲備之一。探索和發現新型高溫超導體並研究其物理機制是世界各國科學家們長期以來一直追求的目標。
-
中國鐵基超導站世界最前沿 打破國際理論極限
國家自然科學一等獎「40K以上鐵基高溫超導體的發現及研究」——鐵基超導的中國突破本報記者喻思孌連續3年空缺的國家自然科學一等獎以趙忠賢、陳仙輝、王楠林、聞海虎、方忠為代表的中國科學院物理研究所/北京凝聚態國家實驗室(籌)(以下簡稱「物理所」)和中國科學技術大學(以下簡稱「中科大」)研究團隊因為在「40K以上鐵基高溫超導體的發現及若干基本物理性質研究」方面的貢獻摘得這一殊榮。鐵基高溫超導體的發現,突破了傳統理論的限制,將我國在該領域的研究推向世界最前沿,也有望激活超導體潛在的應用前景。
-
什麼是鐵基高溫超導體
2008年鐵基高溫超導體的發現,翻開了高溫超導研究的新篇章.最先發現的LnFeAsO(1111體系,Ln為鑭系元素)家族,之後相繼發現了以BaFe2As2為代表的122體系,LiFeAs為代表的111體系以及FeSe為代表的11體系.這四個體系構成鐵基超導體的基本結構類型,它們均具有準二維層狀結構
-
物理所鐵基超導體電荷動力學研究取得新進展
鐵基超導體是凝聚態物理的前沿熱點領域之一。中國科學院物理研究所/北京凝聚態物理國家實驗室(籌)王楠林研究員領導的小組在鐵基超導體的母體和超導樣品的電荷動力學方面繼續進行深入研究,取得新的進展。鐵基超導體的一個主要特徵是存在磁性與超導電性的競爭,當長程磁有序被一定程度抑制之後,出現超導電性。普遍認為,超導電性與磁性漲落密切相關,但對於磁有序的起源卻有不同認識。
-
鐵基超導體中觀察到絕緣體-超導體轉變
銅氧化合物高溫超導體的母體普遍認為是反鐵磁的Mott絕緣體,超導電性的產生是通過摻雜引入載流子,壓制反鐵磁態導致的絕緣體-超導體轉變而實現的。
-
中國學者創造55K鐵基超導體轉變溫度世界紀錄
自2008年以來,他們將目光逐步對準了鐵基高溫超導體。這種超導體以鐵為關鍵化學元素,與1986年歐洲科學家發現的銅氧化物高溫超導體相比,在工業上更加容易製造,同時還能夠承受更大的電流,具有更廣泛的應用。
-
科學家在奇異的超導體中發現令人驚訝的量子效應
由普林斯頓大學的研究人員領導的一個國際小組直接觀察到了高溫含鐵超導體中令人驚訝的量子效應。超導體是無電阻導電的,這使得超導體在遠距離輸電和許多其他節能應用中很有價值。傳統的超導體只能在極低的溫度下工作,但大約10年前發現的某些鐵基材料可以在相對較高的溫度下進行超導,並引起了研究人員的注意。
-
科學家首次在鐵基超導體中發現馬約拉納任意子
近期,中國科學院物理研究所、中國科學院大學高鴻鈞和丁洪領導的聯合研究團隊利用極低溫-強磁場-掃描探針顯微系統首次在鐵基超導體中觀察到了馬約拉納零能模2008年,傅亮等人指出,當把拓撲絕緣體和超導體放在一起時,這個系統就具有類似p波超導體的性質。
-
物理所鐵基高溫超導體電子結構與超導能隙研究取得新進展
2008年發現的鐵基超導體其超導轉變溫度最高可達55K,是繼1986年發現的銅氧化物高溫超導體之後發現的第二類新的高溫超導體系。它的發現,為高溫超導電性的研究開闢了一個新的方向。與銅氧化物高溫超導體的研究類似,鐵基超導體研究的核心問題是理解其高溫超導電性產生的機理。對材料電子結構的研究是理解材料的宏觀物理性質尤其是超導電性的關鍵。
-
進展 | 準二維鐵基超導體中發現朝下色散的中子自旋共振模
理論上,鐵基超導體則普遍認為是s波配對,由於存在多重費米面,自旋共振模通常出現在連接布裡淵區中心Γ點(由空穴費米口袋包圍)到頂角M點(由電子費米口袋包圍)的波矢Q附近。然而針對鐵基超導體自旋共振色散關係的研究還非常少,僅在122體系中觀測到了朝上型色散,與自旋激子圖像的預言吻合。
-
進展|準二維鐵基超導體中發現朝下色散的中子自旋共振模
理論上,鐵基超導體則普遍認為是s波配對,由於存在多重費米面,自旋共振模通常出現在連接布裡淵區中心Γ點(由空穴費米口袋包圍)到頂角M點(由電子費米口袋包圍)的波矢Q附近。目前,幾乎所有的鐵基超導體系都觀測到了自旋共振現象,自旋共振能量ER與超導臨界溫度Tc基本成正比關係:ER=4.9kBTc,略低於銅氧化物高溫超導材料中的比值(ER=5.8kBTc)(圖1(h))。然而針對鐵基超導體自旋共振色散關係的研究還非常少,僅在122體系中觀測到了朝上型色散,與自旋激子圖像的預言吻合。
-
物理所等揭示鐵基超導體超導渦旋中馬約拉納零能模的拓撲本質
鐵基超導體超導渦旋中的馬約拉納零能模是當前人們關注的前沿問題。近日,中國科學院物理研究所/北京凝聚態物理國家研究中心研究員丁洪、中科院院士高鴻鈞與美國麻省理工學院教授Liang Fu通力合作,在鐵基超導體FeTe0.55Se0.45單晶樣品上發現了伴隨馬約拉納零能模出現的渦旋束縛態能級序列半整數嬗移,反映了超導渦旋中馬約拉納零能模的拓撲本質。
-
陳仙輝等人量子反常霍爾效應突破
中國科大陳仙輝課題組與復旦大學物理系張遠波課題組和王靖課題組合作,首次在本徵磁性拓撲絕緣體中實現量子反常霍爾效應,其實現溫度可達到1.4K。近來,本徵磁性拓撲絕緣體(MnBi2Te4)m(Bi2Te3)n系列材料的發現為解決這些問題提供了新思路。這類材料均含有MnBi2Te4層,在層內Mn離子之間鐵磁排列,而層與層之間則形成反鐵磁耦合。理論預言其拓撲表面態會因時間反演對稱性破缺而打開能隙,從而為實現量子反常霍爾效應等量子現象提供了理想平臺。
-
中國在高溫超導體領域發力,繼續領跑全球!
其中,1911年,荷蘭科學家發現水銀在極低溫條件下的超導性,開闢了這個新的科學研究領域,1986年,德國科學家與瑞士科學家發現了臨界轉變溫度為35K的銅氧化物超導體。當時讓科學家苦惱的是,超導體的轉變溫度不能超過40K(約零下233攝氏度),這個極限溫度能不能突破,一直是科學家奮鬥的目標。