鋰離子電池的掘墓者們:雙離子電池

2020-12-05 新能源Leader

文/憑欄眺

鋰離子電池憑藉著高能量密度和長壽命的優勢,在消費電子產品領域取得了巨大的成功,近年隨著電動汽車產業的快速發展,鋰離子電池又開始在新能源領域攻城略地。然而在無限風光下,危機已經悄然出現,隨著電動汽車的續航裡程持續增加,對動力電池能量密度、成本等指標的要求也逐漸提高。對於鋰離子電池而言,目前能量密度上已經到達瓶頸期,研究者們普遍認為350Wh/kg是鋰離子電池的極限,繼續提高能量密度就需要採用全新的體系。並且近年來鋰、鈷和鎳等原材料價格的上漲,導致鋰離子電池成本也承受了很大的壓力,繼續降低成本的空間有限。

面對這些危機,及早布局新技術、新產品是唯一的選擇,在廣大科研工作者的努力下鋰離子電池的繼任者們也都躍躍欲試,爭當鋰離子電池的「掘墓者」。這其中全固態電池是最有希望的繼任者,可以說是開著挖掘機為鋰離子電池掘墓,隨時準備送鋰離子電池走。其次Li-空氣電池、Li-S電池也都是強有力的角逐者,而雙離子電池更像是一匹黑馬,近年來發展速度非常迅猛,前蹄兒已經踩了鋰離子電池臉上,實力絕對不容小覷。

雙離子電池之所以叫雙離子電池,是因為在雙離子電池體系中參與電化學反應的並不是單一離子,我們知道在鋰離子電池中在正負極之間穿梭的只有Li+一種離子,電解液中的陰離子(如PF6-)並不參與反應。而在雙離子電池中則不然,不但陽離子能夠發生嵌入反應,電解液中的陰離子也能夠發生嵌入反應。

在所有的雙離子電池體系中,正負極均採用碳材料的「雙碳電池」是目前研究最多,也是最有潛力的一種雙離子電池設計。石墨能夠嵌入陽離子(如Li+)是我們都知道的,但是碳材料能夠潛入陰離子這就未必是人人都熟悉的一個知識點了。實際上石墨能夠嵌入陰離子這一現象最早在1840年就已經由Schafhaeutl發現,隨後人們也陸續發現了多種能夠嵌入石墨材料中的陰離子,但是這一現象大多數被當為不受歡迎的「副反應」。直到1938年Rudorff和Hofmann等人才首次利用HSO4-在石墨中的嵌入反應製造了首個搖椅式電池,1989年McCullough等人將水系電解液更換為有機電解液,正負極均採用碳材料,首次採用正負極雙離子嵌入反應,隨後該體系也被更多的人進行研究。相比於鋰離子電池,雙離子電池具有一下特點。

1)在雙離子電池中電解液是一種活性物質,電化學反應需要的陰陽離子都儲存在電解液中,因此電解液的數量需要根據活性物質的質量仔細計算。

2)在雙離子電池中隔膜的厚度不能太薄,如前所述,在雙離子電池中電解液作為一種活性物質,主要存儲在電極之間,以及電極內部的孔隙之中,因此在雙離子電池中隔膜需要具有高孔隙率,厚度也需要滿足電解液存儲的數量要求。

3)電解液作為活性物質,其陰離子的選擇,溶劑的選擇和添加劑的選擇都會對電池的工作電壓、容量等產生顯著的影響。

從2012年開始,雙離子電池相關文獻發表久已經呈現出穩步增長的趨勢,截止目前已經有超過了一百篇相關文獻,根據目前的研究成果,能夠用於雙離子電池的陽離子包含Li+、Na+、K+、Ca2+和Al3+,以及離子液體用陽離子Pyr14+和PP14+,陰離子則包含PF6–,BF4-,ClO4–, DFOB–等,以及醯亞胺基陰離子,如FSI-, FTFSI-,TFSI-, BETI-。

對於雙離子電池而言,由於正極中需要嵌入陰離子,因此正極材料的選擇更為關鍵,常見的正極材料有石墨化碳、金屬有機物框架材料(MOFs)、有機類正極材料、電活性聚合物材料等。負極材料選擇則比較多,例如常見的鹼金屬(Li、Na、K等),嵌入型負極材料(例如石墨、無定形碳、TiO2、MoS2等)、合金類材料(Si、Sn等),以及活性炭等。

對於雙離子電池而言,負極的陽離子嵌入反應經過鋰離子電池多年的發展無論是材料,還是反應機理都已經研究的比較充分。但是對於正極側的陰離子嵌入反應研究還並不充分。實際上在鋰離子電池中如果電壓過高(4.5V以上)則會導致電解液中的陰離子嵌入到石墨導電劑之中,破壞導電劑結構引起電極性能衰降,目前已經有不少學者對這一現象進行了研究。根據目前的一些研究成果,碳材料嵌入陰離子的特性主要受到以下一些因素的影響。

1)石墨化程度,高的石墨化程度能夠顯著提升碳材料的陰離子嵌入容量。

2)石墨的顆粒形狀和比表面積,高的比表面積有利於提升碳材料的陰離子嵌入容量和倍率性能。

3)陰離子類型、電解液選擇、截止電壓和環境溫度等都會對雙離子電池的陰離子嵌入反應產生顯著的影響(如下圖所示)。

雙離子電池發展的早期,人們主要採用有機溶劑作為電解液,導致雙離子電池在循環中的庫倫效率較低(<60%),這主要是因為雙離子電池高電壓(陰離子嵌入電壓通常在4.5V以上)引起電解液氧化分解,因此近年來學者也在高穩定性電解液方面做了很多工作,例如採用Pyr14TFSI和LiTFSI為鋰鹽的離子液體作為電解液,具有非常好的高電壓穩定性,從而將充放電的庫倫效率提升到了99%以上。但是離子液體目前仍然存在一些問題,例如離子液體與石墨負極的相容性不佳,無法在石墨負極表面形成穩定的SEI膜,因此會發生溶劑分子共嵌入的問題,導致石墨的分層和剝離,引起可逆容量的衰降。因此離子液體還需要加入特殊的成膜添加劑,幫助形成穩定的SEI膜,改善雙離子電池的循環穩定性。總的來看,雙離子電池的電解液需要滿足一下特性。

1)良好的高電壓穩定性。

2)與電池內的活性物質和非活性物質具有好的相容性,並幫助負極形成好的SEI膜。

3)在雙離子電池中,電解液的濃度隨著SoC的升高而降低,隨著SoC的降低而增加,因此要保證在整個濃度變化範圍內良好的電導率,並需要過量的電解液。

4)陰離子嵌入到石墨中的能力直接影響雙離子電池的容量,因此我們更希望體積小的陰離子,但是實際上由於陰離子的團聚、以及離子對的形成等因素,小離子未必能表現出最佳性能,因此還需要配合電解液溶劑進行綜合的選擇。

能夠同時滿足上述特性的電解液目前只有離子液體和高濃度電解液,特別是高濃度電解液不僅僅能夠提高電解液在高電壓下的穩定性,還能夠減少對Al箔的腐蝕,並且高濃度電解液也有利於提升石墨正極的容量,是目前比較好的選擇。

雙離子電池的應用目前還面臨著諸多的困難,首先是隔膜厚度問題,在雙離子電池中電解液作為一種活性物質,因此電池中必須儲存足量的電解液,我們以4M LiPF6為例,在隔膜孔隙率為45%時,隔膜的厚度需要達到189um,在隔膜孔隙率提高到80%後,厚度需要106um,如果電解液的濃度僅為1M,則隔膜的厚度可達549um,同時過量的電解液也帶來了雙離子電池電解液佔比過大,引起重量能量密度的降低。

從現階段的結束來看,雙離子電池無論是體積能量密度,還是在重量能量密度上相比於鋰離子電池還都有差距,這主要是因為雙離子電池對電解液的需求遠遠高於普通鋰離子電池,導致電解液在電池重量重佔比過大,引起能量密度的降低,同時電解液用量過大也導致了雙離子電池在現階段成本也要顯著高於鋰離子電池。

雙離子電池目前還處於技術發展的早期,無論是在成本還是在性能上都不如目前的鋰離子電池,但是隨著材料技術的進步,特別是電解液技術的進步,雙離子電池仍然具有長足的發展空間,有希望成為鋰離子電池的有力競爭者。在2014年已經有一家日本公司PowerJanpan Plus宣布推出首款商業化雙離子電池,並宣稱這將帶來一次新能源市場的革命。最後送大家一句我的座右銘「對於未來我們別無選擇,要麼拋棄一切擁抱未來,要麼被時代拋棄」。

本文主要參考以下文獻,文章僅用於對相關科學作品的介紹和評論,以及課堂教學和科學研究,不得作為商業用途。如有任何版權問題,請隨時與我們聯繫。

Perspective onPerformance, Cost and Technical Challenges for Practical Dual-Ion Batteries, Joule 2, 1–23, December 19, 2018, Tobias Placke, Andreas Heckmann, RichardSchmuch, Paul Meister, Kolja Beltrop and Martin Winter

文/憑欄眺

相關焦點

  • 中國研發高性能雙離子鈦酸鋰電池    躋身最佳雙離子電池之列
    導讀:中國科學家研製出了一種鈦酸鋰正極和石墨負極雙離子電池。他們的研究集中在由於材料的低比容量而產生的一些困難上,並且他們的裝置展示了鈦酸鋰電池的領先性能。根據中科院的說法,這使它躋身於文獻報導的最佳雙離子電池之列。該電池由鈦酸鋰陽極和石墨陰極組成,但研究人員沒有提供電解質材料的細節。鈦酸鋰電池是消除能源儲能供應鏈中稀有、昂貴和破壞環境的材料,特別是鈷和鎳的途徑之一。CAS指出,這種電池迄今為止由於正極和負極的不匹配特性而受到限制,並試圖通過使用3D多孔結構和在其設備中植入碳納米膜來克服這些問題。
  • 高性能低溫熔鹽雙離子電池
    文/憑欄眺 鋰離子電池主要由氧化物正極材料,石墨體系負極材料構成,其中氧化物正極材料中通常會含有成本較高的Co和Ni元素,這使得鋰離子電池的成本較高。雙離子電池正負極都是採用石墨材料,因此原材料成本要遠遠低於傳統的鋰離子電池,具有良好的應用前景。
  • 高性能低溫熔鹽雙離子電池
    鋰離子電池主要由氧化物正極材料,石墨體系負極材料構成,其中氧化物正極材料中通常會含有成本較高的Co和Ni元素,這使得鋰離子電池的成本較高。雙離子電池正負極都是採用石墨材料,因此原材料成本要遠遠低於傳統的鋰離子電池,具有良好的應用前景。
  • 陰離子溶劑化重構策略,實現高電壓Zn/石墨雙離子電池
    、大功率、低成本且對環境友好的新型電池,曾被稱作鋰離子電池的掘墓者,發展潛力不容小覷。高濃度電解液則另闢蹊徑,通過提高溶質分子的含量來抵禦外界的氧化反應,但電解質的增多極大地降低了電池的能量密度,得不償失。一籌莫展之際,鋰離子電池中最常用的碳酸酯電解液再度委以重任。碳酸酯電解液在5.0V vs.
  • 中科院深圳先進技術研究院等單位成功研製新型鎂基雙離子電池
    5月6日,中國科學院深圳先進技術研究院等單位的研究人員成功研發出了一種新型鎂基雙離子電池(Mg-DIB),該電池基於不溶性有機負極材料研製而成。相關研究成果發表於國際頂級能源材料期刊《能源存儲材料》上。
  • 十大化學革新技術:雙離子電池和治療新冠病毒的 RNA 疫苗
    1、雙離子電池2019 年,鋰離子電池技術獲得諾貝爾化學獎,但是今年最新研製的雙離子電池又將電池技術推向新的高度。鋰離子電池使小型化儲能設備成為可能,為筆記本電腦、智慧型手機和電動汽車提供動力,然而它也有缺點,鋰和鈷相對稀少,是不可持續開採資源之一,而雙離子電池能夠完美地替代它們。
  • 首次報導新型柔性雙離子微型電池
    導讀:本文首次展示了柔性雙離子微型電池。該電池具有極高靈活性和良好的電化學特性,可以通過不同方式串並聯,並可集成為高壓微器件。這種特殊的新型電池可以被應用在LED燈、電致變色玻璃等眾多領域。可以預見微型電池將成為未來儲能器件發展的一個重要趨勢。
  • 研究人員研發合成聚合物電池正極材料 可用於快充電池
    Mendeleev大學以及RAS化學物理問題研究所的俄羅斯研究人員合成了可用於鋰雙離子電池的新聚合物陰極材料,並對其進行了測試。測試結果表明,新陰極性能優於鋰離子電池,不僅可循環25,000個充電周期,並可在幾秒鐘內完成充電,可用於生產價格較低的鉀雙離子電池。由於許多設備大多採用自動模式,因此全球電量消耗逐年遞增,對於能量存儲解決方案的需求也隨之增長。
  • 鋰離子電池的特點_鋰離子電池的發展前景
    鋰離子低昂持工作電壓為3.6V,是鎳氫和鎳鎘電池工作電   壓的3倍。   2.比能量高。鋰離子電池比能量以達到150W·h/kg,是鎳鎘電池的3倍,   鎳氫電池的1.5倍。   3.循環壽命長。目前鋰離子電池循環壽命已達到1000次以上,在低放電深   度下可達幾萬次,超過了其他幾種二次電池。   4.
  • 科研人員研發出新型高效低成本鉀離子電池技術
    ,有望代替現有傳統鋰離子電池技術並實現產業化。相關研究成果A Novel Potassium-Ion-Based Dual-Ion Battery(一種新型鉀基離子電池)已在線發表於國際材料期刊《先進材料》(Advanced Materials DOI: 10.1002/adma.201700519)上。鋰離子電池已廣泛應用於可攜式電子設備、儲能設備等領域。
  • 有機電極材料在鋰離子電池中的應用前景分析
    據介紹,鋰離子電池目前廣泛應用於各類可攜式電子設備,在人類社會的信息化、移動化、智能化、社會化等方面凸顯作用,並有望在電動汽車和智能電網等領域大規模應用。商品化鋰離子電池的正極材料主要是無機過渡金屬氧化物和磷酸鹽,如LiCoO2、LiMn2O4、LiFePO4和LiNixMnyCozO2等。
  • 鋰離子電池原理
    ,因為在所有這些涉及「鋰」的電池理論中,鋰離子電池原理是一條貫穿三者的紐帶,具有承前啟後的作用。由於作為正極材料的含鋰化合物及電解液不同,因而,有基於不同材料的鋰離子電池原理。近年來,人們常說的鋰聚合物電池是在液態鋰離子電池的基礎上發展而來的,它的出現使鋰電池進入到第三個階段,由於鋰聚合物電池是鋰離子電池電解液由液態改進到固態或者凝膠態的電池,因而,它的工作機理並沒有脫離鋰離子電池原理體系,而只是改進了鋰離子電池原理。
  • 18650鋰離子電池和26650鋰離子電池有什麼不同?
    1、額定容量不相同:26650鋰離子電池容量最高可以做到5000mAh,而18650鋰離子電池容量在1200~2800mAh,松下可以做到3600mAh,但市面上很難見到。18650鋰離子電池2、兩個電池的直徑不相同:26650鋰離子電池的直徑是26毫米,18650鋰離子電池的直徑是18毫米。
  • 鋰亞電池與鋰離子超級電容電池
    鋰離子超級電容電池 LSC鋰離子超級電容電池是將鋰離子電池和超級電容的正負極材料通過獨特的方法融合在一起研製出的一種新型鋰離子電化學儲能器件。,有效杜絕洩露的發生鋰亞電池與鋰離子超級電容電池組合ER+LSC將兩種產品並聯使用,鋰亞電池與鋰離子超級電容電池之間出現壓差時,鋰亞電池就會以微小的電流對鋰離子超級電容電池進行充電。
  • 鋰離子電池的優缺點
    本介紹了鋰離子電池的優缺點,根據鋰離子電池的這些特點,在使用鋰離子電池的過程中,我們可以自己做一些保護措施,比如不要過充過放電,不要是鋰離子電池溫度過高等
  • 科普:液體鋰離子電池vs聚合物鋰離子電池
    手機鋰電池大家聽得多,但這玩意又是怎麼分類的呢(下文鋰離子電池簡寫成鋰電)?  其實在電子產品領域,鋰電池常見的有液體鋰離子電池和聚合物鋰離子兩種。  *(18650指電池的直徑為18mm,長度為65mm,圓柱體型的電池。
  • 金屬鉀電池與鋰離子電池一較高下
    (圖片來源:CC0 Public Domain)從手機到太陽能到電動車,人們越來越依賴於電池。隨著對安全、高效和強大的儲能不斷增大的需求,人們對有望替代可充電鋰離子電池技術的呼聲也日漸增長,可充電鋰離子電池技術長期主導了該技術領域。
  • 鋰離子電池
    優點:1)電壓高單體電池的工作電壓高達3.7-3.8V(磷酸鐵鋰的是3.2V),是Ni-Cd、Ni-MH電池的3倍。2)比能量大能達到的實際比能量為555Wh/kg左右,即材料能達到150mAh/g以上的比容量(3--4倍於Ni-Cd,2--3倍於Ni-MH),已接近於其理論值的約88%。
  • Small:基於三聯吡啶-鈷配合物納米片的穩定雙離子電池陰極材料
    另一方面,層狀結構有利於離子或電子在層內或層間傳遞,所以二維納米片在雙離子電池電極材料領域有較大應用前景,但相關研究還處於非常初步的階段。目前報導的雙離子陰極材料中,被廣泛研究的多為無機材料,例如MXene和層狀石墨基電極。但其最高理論容量有限。而具有結構多樣性的有機材料面臨合成條件苛刻,或因為離子的插入造成體積膨脹從而引發材料降解或結構崩壞,導致材料循環穩定性差的問題。
  • 鋰離子電池低溫性能介紹,制約鋰離子電池低溫性能的因素
    鋰離子電池低溫性能介紹,制約鋰離子電池低溫性能的因素。鋰離子電池自商業化以來,以壽命長、比容量大、無記憶效應等優點,獲得了廣泛應用,以往對鋰離子電池的循環壽命和安全性關注較多,隨著應用領域不斷拓展,鋰離子電池的低溫性能低劣帶來的制約愈加明顯。