中科大石墨烯與矽烯中的量子反常霍爾效應獲得理論新突破

2020-11-23 中國教育裝備採購網

  合肥微尺度物質科學國家實驗室與物理系雙聘教授喬振華研究組與校內外同行合作在預言石墨烯和矽烯中的量子反常霍爾效應方面取得新突破,成果發表在3月14日和21日前後兩期的國際權威物理學雜誌《物理評論快報》上,後者併入選編輯推薦文章。

  量子反常霍爾效應是當今凝聚態物理領域一個備受關注的研究熱點。傳統的量子霍爾效應源於電子在外加強磁場作用下的朗道能級;作為一種新的量子態,量子反常霍爾效應源於材料自身的自旋軌道耦合和局域交換場的聯合作用。該效應在1988年由美國科學家F. D. M. Haldane在理論上提出,隨後物理學家們試圖在多類新型量子材料中實現這一效應,直到2013年才首次由清華大學的薛其坤教授所主導的國際研究團隊在超低溫(~0.03K)的極端條件下的磁性拓撲絕緣體中觀測到。如何在更高溫度或其它更易實現的體系裡觀察到這一新奇的量子效應,具有廣泛的基礎與應用價值。

  由於其獨特的晶體結構與線性狄拉克色散關係[如圖(a)和(c)所示],石墨烯提供了另一種理想的探索量子反常霍爾效應的平臺。不同於拓撲絕緣體,石墨烯本身沒有磁性並且內稟自旋軌道效應極弱。2010年喬振華博士與合作者提出在石墨烯中通過引入破壞鏡面對稱性的外稟Rashba自旋軌道耦合作用以及破壞時間反演對稱性的局域交換場,可以打開一個拓撲性質非平庸的體能隙來實現量子反常霍爾效應。在隨後的工作中,該團隊開展了一系列研究來揭示石墨烯中量子反常霍爾效應的微觀物理形成機制並提出了多種實驗原型,比如周期性或隨機性地吸附磁性金屬原子。然而,在石墨烯表面金屬原子傾向於形成團簇而非形成稀疏吸附分布,意味著通過吸附磁性金屬原子在石墨烯中實現量子反常霍爾效應是極端困難的。

  圖 1:(a) 4x4的石墨烯超元胞;(b) 4x4的石墨烯超元胞置於鐵鉍酸的(111)鐵磁面上;(c) 對應於圖(a)的石墨烯能帶圖[狄拉克點無能隙];(d) 對應於圖(b)的能帶圖[狄拉克點打開一個量子反常霍爾效應體能隙]。

  最近,喬振華教授與校內外同行提出一種新的實驗方案來實現量子反常霍爾效應:將石墨烯置於反鐵磁絕緣體材料鐵鉍酸的鐵磁面上(如圖1(b)所示)。由於石墨烯與磁性原子間的近鄰效應,石墨烯可以同時誘導出較強的外稟Rashba自旋軌道耦合作用以及更強的局域交換場,從而打開一個約為11.5K的量子反常霍爾效應體能隙(如圖1(d)所示)。此外,通過外加垂直應力來調節石墨烯與磁性襯底的間距,可以增強近鄰效應從而使得其實驗可實現溫度達到40K以上。

  作為石墨烯的姊妹材料,矽烯由矽原子按六角晶格結構組成。除了具有石墨烯的優異特性外,矽稀起伏的幾何結構特性使其內稟自旋軌道耦合作用和內稟Rashba自旋軌道耦合作用比石墨烯大很多。由於其較強的內稟自旋軌道耦合作用,矽烯被認為是一種理想的材料來實現量子自旋霍爾效應。當時間反演對稱性被破壞時,內稟Rashba自旋軌道耦合作用也會導致量子反常霍爾效應。喬振華教授與北航、北理等國內多校合作者從理論上發現,單獨的內稟或者外稟的Rashba自旋軌道耦合作用導致的量子反常霍爾效應在動量空間的不同谷點具有相同的貢獻;但是,當內稟與外稟Rashba自旋軌道耦合作用同時存在時,其聯合作用製造出一種新的谷極化的量子反常霍爾效應,即量子反常霍爾效應在不同谷點具有不同的貢獻,從而使得該電子態同時具有量子反常霍爾效應和量子谷霍爾效應的特性。該項研究為將來設計低能耗的谷電子學元器件提供了堅實的理論依據。

  該系列工作受到中國科大、中國科學院「百人計劃」、國家自然科學基金委和量子信息與量子科技前沿協同創新中心的資助。

版權與免責聲明:

① 凡本網註明"來源:中國教育裝備採購網"的所有作品,版權均屬於中國教育裝備採購網,未經本網授權不得轉載、摘編或利用其它方式使用。已獲本網授權的作品,應在授權範圍內使用,並註明"來源:中國教育裝備採購網"。違者本網將追究相關法律責任。

② 本網凡註明"來源:XXX(非本網)"的作品,均轉載自其它媒體,轉載目的在於傳遞更多信息,並不代表本網贊同其觀點和對其真實性負責,且不承擔此類作品侵權行為的直接責任及連帶責任。如其他媒體、網站或個人從本網下載使用,必須保留本網註明的"稿件來源",並自負版權等法律責任。

③ 如涉及作品內容、版權等問題,請在作品發表之日起兩周內與本網聯繫,否則視為放棄相關權利。

相關焦點

  • 物理所預言矽烯中的量子自旋霍爾效應
    最近,中科院物理研究所/北京凝聚態物理國家實驗室(籌)姚裕貴研究員以及博士生劉鋮鋮、馮萬祥採用第一性原理,系統地研究了矽烯的晶體結構、穩定性、能帶拓撲和自旋軌道耦合打開的能隙,預言了在矽烯中可以實現量子自旋霍爾效應。   近幾年來,拓撲絕緣體的研究在世界範圍內飛速發展,並成為凝聚態物理研究中的一個熱點領域。
  • 量子反常霍爾效應
    2010年,中科院物理所方忠、戴希帶領的團隊與張首晟教授等合作,從理論與材料設計上取得了突破,他們提出Cr或Fe磁性離子摻雜的Bi2Te3、Bi2Se3、Sb2Te3族拓撲絕緣體中存在著特殊的V.Vleck鐵磁交換機制,能形成穩定的鐵磁絕緣體,是實現量子反常霍爾效應的最佳體系[Science,329, 61(2010)]。
  • 「量子反常霍爾效應」研究取得重大突破
    由中國科學院物理研究所和清華大學物理系的科研人員組成的聯合攻關團隊,經過數年不懈探索和艱苦攻關,最近成功實現了「量子反常霍爾效應」。這是國際上該領域的一項重要科學突破,該物理效應從理論研究到實驗觀測的全過程,都是由我國科學家獨立完成。  量子霍爾效應是整個凝聚態物理領域最重要、最基本的量子效應之一。
  • 量子霍爾家族的新成員 實驗發現量子反常霍爾效應
    量子霍爾效應是整個凝聚態物理領域最重要、最基本的量子效應之一。它是一種典型的宏觀量子效應,是微觀電子世界的量子行為在宏觀尺度上的一個完美體現。在量子霍爾效應家族裡一個至今尚未被發現的效應是「量子反常霍爾效應」——不需要外加磁場的量子霍爾效應。
  • 我國科學家首次在實驗中發現量子反常霍爾效應
    在實驗中發現「量子反常霍爾效應」 我國物理學研究取得世界級成果  【新聞直播間】我科學家發現量子反常霍爾效應4月10日,清華大學和中國科學院物理研究所在北京聯合宣布:由清華大學薛其坤院士領銜,清華大學物理系和中科院物理研究所聯合組成的實驗團隊最近取得重大科研突破,在磁性摻雜的拓撲絕緣體薄膜中,從實驗上首次觀測到量子反常霍爾效應
  • 我國首次實驗發現量子反常霍爾效應
    近日,我國在量子科學研究中取得重大突破,在磁性摻雜的拓撲絕緣體薄膜中,首次觀測到量子反常霍爾效應。該成果被視為世界基礎研究領域的一項重要科學發現。    作為微觀電子量子行為的宏觀體現,量子霍爾效應一直在凝聚態物理研究中佔據極其重要的地位,並可能在未來用於製備低能耗的高速電子器件。然而,量子霍爾效應的產生需要施加強磁場,因此,造價昂貴、體積龐大等因素限制了其走向實際應用。
  • 量子反常霍爾效應與材料物理學
    1月8日,由清華大學薛其坤院士領銜,清華大學、中國科學院物理所聯合組成的實驗團隊完成的「量子反常霍爾效應的實驗發現」項目獲2018年度國家自然科學獎一等獎。薛其坤教授領銜的科研團隊在世界上首次在實驗上觀測到量子反常霍爾效應,實現了這一基礎科學領域的重大突破。薛其坤教授表示,材料生長動力學奠定了他們的研究基礎。本期特邀薛其坤院士介紹量子反常霍爾效應發現實驗的過程以及背後的材料物理學研究。
  • 清華大學發現量子反常霍爾效應 觸及諾貝爾獎
    清華大學和中國科學院物理研究所4月10日在北京聯合宣布,由清華大學薛其坤院士領銜,清華大學物理系和中科院物理研究所聯合組成的實驗團隊最近取得重大科研突破,在磁性摻雜的拓撲絕緣體薄膜中,從實驗上首次觀測到量子反常霍爾效應。這一實驗發現也證實了此前中科院物理研究所與史丹福大學理論團隊的預言。
  • ...學系張遠波課題組在本徵磁性拓撲絕緣體中觀測到量子反常霍爾效應
    量子反常霍爾效應正是微觀電子的量子現象在宏觀尺度下精確而完美的體現,也是這個真實世界奇異性的極致體現。此外,量子反常霍爾效應中無損耗的導電邊緣態和量子化的電阻可能在電子學器件、精密測量方面具有應用價值,具有量子反常霍爾效應的材料體系也是實現拓撲量子計算的方案之一。張遠波課題組製備出了錳鉍碲少層電輸運器件,並在其高質量的五層單晶中分別觀察到了量子反常霍爾效應和常規量子霍爾效應。
  • 量子反常霍爾效應:薛其坤送給世界的禮物,將帶來新的信息新革命
    馮·克裡津獲得1985年諾貝爾物理學獎,而崔琦和史特莫則獲得了 1998 年諾貝爾獎。到了2005年,英國科學家安德烈·海姆和康斯坦丁·諾沃肖洛夫。他們倆在2005年發現了石墨烯中的半整數量子霍爾效應,斬獲2010年的諾貝爾物理學獎。簡單來說,量子霍爾效應一般都是在超低溫和強磁場等極端條件下出現。
  • 中國科學家首次在實驗中發現量子反常霍爾效應
    中新社北京4月10日電 (記者 馬海燕)中國科學家首次在實驗中發現量子反常霍爾效應引起國際物理學界巨大反響,著名物理學家、諾貝爾獎得主楊振寧10日稱讚其是諾貝爾獎級的成績。清華大學和中國科學院物理研究所10日在北京聯合宣布:由清華大學教授、中國科學院院士薛其坤領銜,清華大學物理系和中科院物理研究所聯合組成的實驗團隊最近取得重大科研突破,在磁性摻雜的拓撲絕緣體薄膜中,從實驗上首次觀測到量子反常霍爾效應。這一實驗發現也證實了三年前中科院物理研究所與史丹福大學理論團隊的預言。
  • 科學網—首次實現量子反常霍爾效應
    本報訊(見習記者孫愛民 記者丁佳)
  • 薛其坤:量子反常霍爾效應與材料物理學
    1月8日,由清華大學薛其坤院士領銜,清華大學、中國科學院物理所聯合組成的實驗團隊完成的「量子反常霍爾效應的實驗發現」項目獲2018年度國家自然科學獎一等獎。薛其坤教授領銜的科研團隊在世界上首次在實驗上觀測到量子反常霍爾效應,實現了這一基礎科學領域的重大突破。薛其坤教授表示,材料生長動力學奠定了他們的研究基礎。本期特邀薛其坤院士介紹量子反常霍爾效應發現實驗的過程以及背後的材料物理學研究。
  • 薛其坤院士綜述文章:量子反常霍爾效應
    一百多年來,物理學家在不同的材料中陸續發現了多種不同的霍爾效應:如普通導體中的正常霍爾效應,磁性材料中出現的反常霍爾效應,半導體材料中的自旋霍爾效應。這些發現不但大大豐富了霍爾效應的內涵,而且加深了人們對固體電子性質的理解。
  • 中科院、清華大學聯合發現「量子反常霍爾效應」 可衝擊諾貝爾獎
    由中國科學院物理研究所和清華大學物理系的科研人員組成的聯合攻關團隊,經過數年不懈探索和艱苦攻關,最近成功實現了「量子反常霍爾效應」。這是國際上該領域的一項重要科學突破,該物理效應從理論研究到實驗觀測的全過程,都是由我國科學家獨立完成。
  • 量子反常霍爾效應獲2018國家自然科學獎一等獎,這有多「反常」?
    國家自然科學獎一等獎為薛其坤院士團隊完成的「量子反常霍爾效應的實驗發現」。量子反常霍爾效應,對普通人來說,拗口而晦澀。但在物理學家眼中,它"神奇"又"美妙"。因為它的發現可能帶來下一次信息技術革命。採用這種技術設計集成電路和元器件,千億次的超級計算機有望做成平板電腦那麼大,智慧型手機的內存可能會提高上千倍!
  • 【中國科學報】首次實現量子反常霍爾效應
    最近,由中科院物理所和清華大學等機構的科研人員組成的團隊,首次成功實現「量子反常霍爾效應」。該結果於3月14日在線發表於美國《科學》雜誌。 在凝聚態物理領域,量子霍爾效應研究是一個非常重要的研究方向。發現整數量子霍爾效應與分數量子霍爾效應的科學家分別獲得1985年和1998年諾貝爾物理學獎。
  • 量子反常霍爾效應:打開諾貝爾獎富礦的鑰匙--中國數字科技館
    量子霍爾效應之所以如此重要,一方面是由於它們體現了二維電子系統在低溫強磁場極端條件下的奇妙量子行為;另一方面,這些效應可能在未來電子器件中發揮特殊的作用,有望通過開發低能耗的高速電子器件從而引領新一輪信息技術革命。此前,在量子霍爾效應家族裡仍未被發現的效應是量子反常霍爾效應——不需要外加磁場的量子霍爾效應。
  • 美專家稱讚量子反常霍爾效應為諾獎級成果
    美專家稱讚量子反常霍爾效應為諾獎級成果來源:新華網 2013-04-14 林小春 任海軍        中國清華大學和中科院物理所的聯合研究團隊日前從實驗中首次觀測到量子反常霍爾效應。他表示,目前的主要限制在於量子反常霍爾效應只有在超低溫條件下(絕對零度即零下273攝氏度以下)才能觀察到,「如果將來能在室溫環境(20攝氏度)下做到這一點,那麼製造出iPad平板電腦大小的超級計算機並非不可能,但還需要在材料方面有重大突破」。
  • 量子反常霍爾效應 它的發現有什麼重大意義?
    ▲量子反常霍爾效應的示意圖,拓撲非平庸的能帶結構產生具有手徵性的邊緣態,從而導致量子反常霍爾效應  理論計算得到的磁性拓撲絕緣體多層膜的能帶結構和相應的霍爾電導由於此前和量子霍爾效應有關的科研成果已經3獲諾貝爾獎,學術界很多人士對這項「可能是量子霍爾效應家族最後一個重要成員」的研究給予了極高的關注和期望。那麼什麼是量子反常霍爾效應?對它的研究為什麼引起世界各國科學家的興趣?它的發現有什麼重大意義?  重要性  突破摩爾定律瓶頸加速推動信息技術革命進程  在認識量子反常霍爾效應之前,讓我們先來了解一下量子霍爾效應。