-
正方形的對角線2釐米,與扇形和半圓構成圖形,求陰影部分的面積
正方形ABCD的對角線AC=2釐米,扇形ACB是以AC為直徑的半圓,扇形DAC是以D為圓心,AD為半徑的圓的一部分,求陰影部分的面積。(π=3.14)思路 : 解決陰影部分面積的問題,無非就是大圖形減去小圖形的問題,可以代換,可以切割,也可以組合。
-
求陰影部分的面積,李明用扇形ABC減三角形ABC,你覺得對嗎?
這題的題幹很簡單,已知正方形的邊長是4釐米,求陰影部分的面積,π取3.14,本題6分。這是某著名師大附中小升初入學分班數學考試題的第18題。如下圖所示:李明的做法是這樣的:用扇形ABC面積減去三角形ABC面積,得出陰影部分的面積,他的答題過程,如下圖所示:看完李明的答題過程後,你覺得他做的對嗎?該給多少分呢?請將你給的分和點評寫在下面評論區,我們一起討論吧。下面,我們就一起來,一步一步地,討論一下李明的答題過程吧,研究一下這道小升初入學分班數學考試題究竟該如何才能得滿分。
-
計算下圖中陰影部分的面積,最簡單的方法是用正方形的面積除以2
小升初數學題圖形包含了正方形、扇形和三角形,但是所求陰影部分的面積卻是兩個不規則的圖形。這兩個陰影部分直接是無法進行計算的,這時候,我們就要考慮運用圖形面積相減法了。請同學們仔細觀察,看看該怎麼運用圖形面積相減法求出陰影部分的面積來呢?不難發現,左邊的陰影部分的面積=正方形面積-扇形的面積,右邊的陰影部分的面積=扇形的面積-三角形的面積,這樣,我們就先寫出分析的第一步,如下圖所示:
-
求陰影部分的面積,圖形複雜有點兒難度,方法一:梯形減去扇形
這是一道小升初數學題,求圖中陰影部分的面積,圖形比較複雜,圖中包含了正方形、扇形、三角形等圖形,並且陰影部分又是多個,還是有點兒難度。如下圖所示:題中告訴我們,ABCD是一個正方形,並且正方形邊長等於5,還有一個等量關係是:EA=AB=BF=FG=5。看圖形,要求圖中陰影部分的面積,我們觀察到,陰影部分由ADE和BGCD兩部分組成,也可以看成由ADE、BCD、BCG三部分組成。陰影部分的面積怎麼求呢?
-
求陰影部分的面積,全班同學都知道,運用面積相減法輕鬆得滿分
如圖,正方形ABCD和正方形CEFG的邊長分別是4釐米和6釐米,求陰影部分的面積。這是某交大附中入學數學考試第18題。三角形ADG的底AD就是正方形的邊長為4釐米,高DG可以用大正方形的邊長CG減去小正方形的邊長CD,即為2釐米。於是,我們就可以運用三角形的面積公式:底乘以高除以2,計算出三角形ADG的面積,如下圖所示:
-
與圓有關的計算,圓的陰影部分面積計算,學生:求心理陰影面積
圓的陰影部分面積,在中考中屬於計算類題目,一般都是計算不規則圖形的陰影部分面積,我們常用規則圖形的面積作減法來計算,這裡我們需要知道扇形的面積計算公式和一些其它圖形的面積公式計算例一:>連接BC,OB,我們計算陰影部分的面積,就可以當作三角形BCE的面積減去拱形BC的面積,即BCE-(扇形OBC-OBC)例二:求陰影部分面積有時候輔助線很重要例三:例四:利用弧長公式計算
-
求陰影部分的面積,知道方法也不會,原因:三個扇形的面積沒轉換
這是某著名的師大附中小升初入學分班數學考試題,如下圖所示,三角形的面積是30平方釐米,以三角形三個頂點為圓心分別作圓,三個圓的半徑都是2釐米,求陰影部分的面積。取π 為3。先看這個題,陰影部分的面積很明顯,就是三角形的面積減去三個與三角形相交的扇形的面積。這樣,我們就寫出解題第一步,陰影部分的面積=三角形的面積-三個扇形的面積,如下圖所示:
-
「中考數學」陰影部分面積計算
陰影部分面積計算是全國中考的高頻考點,常在選擇題和填空題中考查,要想中考不丟分,這些方法你一定不能錯過「七嘴八舌」說考情雲南說:我們省卷近2年連續考查,在選填、解答題均有涉及;昆明近4年考查2次,均在解答題涉及,我們求的面積都是不規則圖形,需要轉換為規則圖形的面積的和差來求解
-
小學數學陰影部分葉形葉子面積的五種計算方法
求下圖中陰影部分的面積。(單位:釐米)計算方法一:解題思路:觀察下圖,陰影部分和任意一個空白組後可以組成一個扇形,也就是四分之一圓,作輔助線連接葉子的頂點,用扇形的面積減去三角形的面積,可以求出「 半片葉形 」 的面積,再乘以 2 即可求出整個陰影部分的面積。
-
小學數學求陰影部分面積之雙正方形模型(9種)
01撇捺折九圖先來看看以下幾個圖,每個圖都是由兩個正方形組成,大正方形邊長6cm,小正方形邊長4cm,圖中陰影部分的面積分別是多少?從寫法上來看方法二最簡潔,但是分割後是兩個斜三角形,很多同學對於斜三角形的高不太會找,所以直接求其實是有一定困難的。正難則反,間接求,用補的方法就很簡單了,而且有很多種不同的方法。間接求可以歸納為一個通用的公式:S陰影=S總-S白其餘八個圖也都可以用這個公式來解決。
-
求弓形面積之和,很多同學沒得分,原因:弓形對應圓的半徑算錯了
說到弓形,我們就要第一時間想到扇形,因為弓形是扇形的一部分,如圖中所示的最大的弓形,就是扇形DGH的一部分,再仔細看看這個弓形,如何求出它的面積?發現了嗎?我們很容易發現:弓形面積=扇形面積-三角形面積。
-
圓的弧長與扇形面積,陰影部分面積計算題,老師:用割補法計算
圓的弧長與陰影部分面積的計算是中考數學計算中的一種填空題類型,難度倒也不大,話說中考數學也不一定全都是考的超難的也有基礎題目,今天為大家整理一些圓陰影部分面積計算的習題例題一:圓錐的側面展開圖其實就是扇形的面積,根據扇形的面積公式計算就可以,也可以用推導出的公式s=
-
小學數學圖形求面積十大方法總結(附例題解析)
我們曾經學過的三角形、長方形、正方形、平行四邊形、梯形、菱形、圓和扇形等圖形,一般稱為基本圖形或規則圖形。我們的面積及周長都有相應的公式直接計算。如下表:實際問題中,有些圖形不是以基本圖形的形狀出現,而是由一些基本圖形組合、拼湊成的,它們的面積及周長無法應用公式直接計算。一般我們稱這樣的圖形為不規則圖形。
-
求陰影面積的四種方法,三分鐘學會,記得來學習!
求陰影圖形的面積是中考數學的一個熱點,它主要由圓、扇形、三角形、四邊形等圖形組合而成。解題時需要注意觀察和分析圖形,明確要計算圖形的面積可以怎樣進行轉化,切忌盲目計算。若設BE與AD相交於點G,BF與CD相交於點H,根據菱形的性質得出△DAB是等邊三角形,進而利用全等三角形的判定得出△ABG≌DBH,得出四邊形GBHD的面積等於△ABD的面積,進而用扇形EBF的面積三角形ABD的面積求出即可。
-
小升初陰影部分周長和面積計算方法
,三角形的底和高底和高為圓的半徑。C陰影=C圓+邊長×2=8×3.14+8×2陰影部分面積可以分成四個小方塊,右上角小正方形全部為陰影切可直接算出,左上和右下的圖形是一樣,左下為兩個題>三角形的底和高都是元的半徑。
-
數學圖形面積計算的十種方法,一網打盡,幫助你提高成績
我們曾經學過的三角形、長方形、正方形、平行四邊形、梯形、菱形、圓和扇形等圖形,一般稱為基本圖形或規則圖形.我們的面積及周長都有相應的公式直接計算.如下表:實際問題中,有些圖形不是以基本圖形的形狀出現,而是由一些基本圖形組合、拼湊成的,它們的面積及周長無法應用公式直接計算.一般我們稱這樣的圖形為不規則圖形。
-
小升初數學必看:求陰影面積常用的幾種方法,面積倍數比法靠轉化
求陰影面積是小升初常考題型,今天小編為大家整理幾種類型下,常用的陰影面積求法!必須會的基本規則圖形面積公式:正方形的面積=邊長×邊長長方形的面積=長×寬平行四邊形的面積=底×高三角形的面積=底×高÷2梯形的面積=(上底+下底)×高÷2圓的面積=半徑的平方×圓周率求陰影面積常用的幾種方法直接求法:已知陰影圖形是規則的圖形,可直接根據對應的面積求解
-
小升初分班考試題,求陰影部分的面積,方法:總面積-空白面積
如下圖所示,正方形ABCD的邊長為10cm,以CD為直徑作半圓,E為半圓周上的中點,F為BC邊長的中點,求陰影部分的面積。π取3.14。首先,觀察圖形,寫出陰影部分面積的計算方法。總圖形是一個正方形和一個半圓的組合,那麼,總圖形的面積就可以計算出來。這樣,我們就用我們之前研究過的方法,陰影部分的面積=總面積-空白面積,寫出第一步,如下圖所示:
-
五年級數學必會圖形求面積的10個方法!圖文並茂,太實用了
小學數學學過的幾何圖形有三角形、長方形、正方形、平行四邊形、梯形、菱形、圓和扇形,這些幾何圖形一般稱為基本圖形或規則圖形,我們的面積及周長都有相應的公式直接計算。如下表:
-
分享一道小學數學競賽題,求陰影部分的面積,關鍵是面積的轉換
今天數學世界為大家分享一道小學數學圖形題,求陰影部分的面積,此題難度較大,屬於小學競賽題,但是並沒有超綱。如果你是來到這裡的新朋友,請翻看數學世界以前發布的文章,希望能夠對廣大學生的學習和備考有一些幫助,請持續關注我們,謝謝! 下面,數學世界要講解的題目涉及到的知識點主要就是等底等高的三角形面積的轉換,圓的認識與計算以及對稱圖形的相關知識等。