一直想給大家講講ESD的理論,很經典。但是由於理論性太強,如果前面那些器件理論以及snap-back理論不懂的話,這個大家也不要浪費時間看了。任何理論都是一環套一環的,如果你不會畫雞蛋,註定了你就不會畫大衛。
靜電放電(ESD: Electrostatic Discharge),應該是造成所有電子元器件或集成電路系統造成過度電應力(EOS: Electrical Over Stress)破壞的主要元兇。因為靜電通常瞬間電壓非常高(>幾千伏),所以這種損傷是毀滅性和永久性的,會造成電路直接燒毀。所以預防靜電損傷是所有IC設計和製造的頭號難題。
靜電,通常都是人為產生的,如生產、組裝、測試、存放、搬運等過程中都有可能使得靜電累積在人體、儀器或設備中,甚至元器件本身也會累積靜電,當人們在不知情的情況下使這些帶電的物體接觸就會形成放電路徑,瞬間使得電子元件或系統遭到靜電放電的損壞(這就是為什麼以前修電腦都必須要配戴靜電環託在工作桌上,防止人體的靜電損傷晶片),如同雲層中儲存的電荷瞬間擊穿雲層產生劇烈的閃電,會把大地劈開一樣,而且通常都是在雨天來臨之際,因為空氣溼度大易形成導電通到。
那麼,如何防止靜電放電損傷呢?首先當然改變壞境從源頭減少靜電(比如減少摩擦、少穿羊毛類毛衣、控制空氣溫溼度等),當然這不是我們今天討論的重 點。我們今天要討論的時候如何在電路裡面涉及保護電路,當外界有靜電的時候我們的電子元器件或系統能夠自我保護避免被靜電損壞(其實就是安裝一個避雷 針)。這也是很多IC設計和製造業者的頭號難題,很多公司有專門設計ESD的團隊,今天我就和大家從最基本的理論講起逐步講解ESD保護的原理及注意點, 你會發現前面講的PN結/二極體、三極體、MOS管、snap-back全都用上了。。。
以前的專題講解PN結二極體理論的時候,就講過二極體有一個特性:正嚮導通反向截止(不記得就去翻前面的課程),而且反偏電壓繼續增加會發生雪崩擊穿(Avalanche Breakdown)而導通,我們稱之為鉗位二極體(Clamp)。這正是我們設計靜電保護所需要的理論基礎,我們就是利用這個反向截止特性讓這個旁路在正常工作時處於斷開狀態,而外界有靜電的時候這個旁路二極體發生雪崩擊穿而形成旁路通路保護了內部電路或者柵極(是不是類似家裡水槽有個溢水口,防止水龍頭忘關了導致整個衛生間水災)。那麼問題來了,這個擊穿了這個保護電路是不是就徹底死了?難道是一次性的?答案當然不是。
PN結的擊穿分兩種,分別是電擊穿和熱擊穿,電擊穿指的是雪崩擊穿(低濃度)和齊納擊穿(高濃度),而這個電擊穿主要是載流子碰撞電離產生新的電子-空穴對(electron-hole),所以它是可恢復的。但是熱擊穿是不可恢復的,因為熱量聚集導致矽(Si)被熔融燒毀了。所以我們需要控制在導通的瞬間控制電流,一般會在保護二極體再串聯一個高電阻,另外,大家是不 是可以舉一反三理解為什麼ESD的區域是不能form Silicide的?還有給大家一個理論,ESD通常都是在晶片輸入端的Pad旁邊,不能在晶片裡面,因為我們總是希望外界的靜電需要第一時間洩放掉吧, 放在裡面會有延遲的(關注我前面解剖的那個晶片PAD旁邊都有二極體http://ic-garden.cn/?p=482)。甚至有放兩級ESD的,達到雙重保護的目的。
在講ESD的原理和Process之前,我們先講下ESD的標準以及測試方法,根據靜電的產生方式以及對電路的損傷模式不同通常分為四種測試方式:人體放電模式(HBM: Human-Body Model)、機器放電模式(Machine Model)、元件充電模式(CDM: Charge-Device Model)、電場感應模式(FIM: Field-Induced Model),但是業界通常使用前兩種模式來測試(HBM, MM)。
1、人體放電模式(HBM):當然就是人體摩擦產生了電荷突然碰到晶片釋放的電荷導致晶片燒毀擊穿,秋天和別人觸碰經常觸電就是這個原因。業界對HBM的ESD標準也有跡可循(MIL- STD-883C method 3015.7,等效人體電容為100pF,等效人體電阻為1.5Kohm),或者國際電子工業標準(EIA/JESD22-A114-A)也有規定,看你要follow哪一份了。如果是MIL-STD-883C method 3015.7,它規定小於<2kV的則為Class-1,在2kV~4kV的為class-2,4kV~16kV的為class-3。
2、機器放電模式(MM):當然就是機器(如robot)移動產生的靜電觸碰晶片時由pin腳釋放,次標準為EIAJ-IC-121 method 20(或者標準EIA/JESD22-A115-A),等效機器電阻為0 (因為金屬),電容依舊為100pF。由於機器是金屬且電阻為0,所以放電時間很短,幾乎是ms或者us之間。但是更重要的問題是,由於等效電阻為0,所以電流很大,所以即使是200V的MM放電也比2kV的HBM放電的危害大。而且機器本身由於有很多導線互相會產生耦合作用,所以電流會隨時間變化而幹擾變化。
ESD的測試方法類似FAB裡面的GOI測試,指定pin之後先給他一個ESD電壓,持續一段時間後,然後再回來測試電性看看是否損壞,沒問題再去加一個step的ESD電壓再持續一段時間,再測電性,如此反覆直至擊穿,此時的擊穿電壓為ESD擊穿的臨界電壓(ESD failure threshold Voltage)。通常我們都是給電路打三次電壓(3 zaps),為了降低測試周期,通常起始電壓用標準電壓的70% ESD threshold,每個step可以根據需要自己調整50V或者100V。
另外,因為每個chip的pin腳很多,你是一個個pin測試還是組合pin測試,所以會分為幾種組合:I/O-pin測試(Input and Output pins)、pin-to-pin測試、Vdd-Vss測試(輸入端到輸出端)、Analog-pin。
1. I/O pins:就是分別對input-pin和output-pin做ESD測試,而且電荷有正負之分,所以有四種組合:input+正電荷、input+負電荷、output+正電荷、output+負電荷。測試input時候,則output和其他pin全部浮接(floating),反之亦然。
2. pin-to-pin測試:靜電放電發生在pin-to-pin之間形成迴路,但是如果要每每兩個腳測試組合太多,因為任何的I/O給電壓之後如果要對整個電路產生影響一定是先經過VDD/Vss才能對整個電路供電,所以改良版則用某一I/O-pin加正或負的ESD電壓,其他所有I/O一起接地,但是輸入和輸出同時浮接(Floating)。
3、Vdd-Vss之間靜電放電:只需要把Vdd和Vss接起來,所有的I/O全部浮接(floating),這樣給靜電讓他穿過Vdd與Vss之間。
4、Analog-pin放電測試:因為模擬電路很多差分比對(Differential Pair)或者運算放大器(OP AMP)都是有兩個輸入端的,防止一個損壞導致差分比對或運算失效,所以需要單獨做ESD測試,當然就是只針對這兩個pin,其他pin全部浮接(floating)。
好了,ESD的原理和測試部分就講到這裡了,下面接著講Process和設計上的factor
隨著摩爾定律的進一步縮小,器件尺寸越來越小,結深越來越淺,GOX越來越薄,所以靜電擊穿越來越容易,而且在Advance製程裡面,Silicide引入也會讓靜電擊穿變得更加尖銳,所以幾乎所有的晶片設計都要克服靜電擊穿問題。
靜電放電保護可以從FAB端的Process解決,也可以從IC設計端的Layout來設計,所以你會看到Prcess有一個ESD的option layer,或者Design rule裡面有ESD的設計規則可供客戶選擇等等。當然有些客戶也會自己根據SPICE model的電性通過layout來設計ESD。
1、製程上的ESD:要麼改變PN結,要麼改變PN結的負載電阻,而改變PN結只能靠ESD_IMP了,而改變與PN結的負載電阻,就是用non-silicide或者串聯電阻的方法了。
1) Source/Drain的ESD implant:因為我們的LDD結構在gate poly兩邊很容易形成兩個淺結,而這個淺結的尖角電場比較集中,而且因為是淺結,所以它與Gate比較近,所以受Gate的末端電場影響比較大,所以這樣的LDD尖角在耐ESD放電的能力是比較差的(<1kV),所以如果這樣的Device用在I/O埠,很容造成ESD損傷。所以根據這個理論,我們需要一個單獨的器件沒有LDD,但是需要另外一道ESD implant,打一個比較深的N+_S/D,這樣就可以讓那個尖角變圓而且離表面很遠,所以可以明顯提高ESD擊穿能力(>4kV)。但是這樣的 話這個額外的MOS的Gate就必須很長防止穿通(punchthrough),而且因為器件不一樣了,所以需要單獨提取器件的SPICE Model。
2) 接觸孔(contact)的ESD implant:在LDD器件的N+漏極的孔下面打一個P+的硼,而且深度要超過N+漏極(drain)的深度,這樣就可以讓原來Drain的擊穿電壓降低(8V-->6V),所以可以在LDD尖角發生擊穿之前先從Drain擊穿導走從而保護Drain和Gate的擊穿。所以這樣的設計能夠保持器件尺寸不變,且MOS結構沒有改變,故不需要重新提取SPICE model。當然這種智能用於non-silicide製程,否則contact你也打不進去implant。
3) SAB (SAlicide Block):一般我們為了降低MOS的互連電容,我們會使用silicide/SAlicide製程,但是這樣器件如果工作在輸出端,我們的器件負載電阻變低,外界 ESD電壓將會全部加載在LDD和Gate結構之間很容易擊穿損傷,所以在輸出級的MOS的Silicide/Salicide我們通常會用SAB(SAlicide Block)光罩擋住RPO,不要形成silicide,增加一個photo layer成本增加,但是ESD電壓可以從1kV提高到4kV。
4)串聯電阻法:這種方法不用增加光罩,應該是最省錢的了,原理有點類似第三種(SAB)增加電阻法,我就故意給他串聯一個電阻(比如Rs_NW,或者HiR,等),這樣也達到了SAB的方法。
2、設計上的ESD:這就完全靠設計者的功夫了,有些公司在設計規則就已經提供給客戶solution了,客戶只要照著畫就行了,有些沒有的則只能靠客戶自己的designer了,很多設計規則都是寫著這個只是guideline/reference,不是guarantee的。一般都是把Gate/Source/Bulk短接在一起,把Drain結在I/O端承受ESD的浪湧(surge)電壓,NMOS稱之為GGNMOS (Gate-Grounded NMOS),PMOS稱之為GDPMOS (Gate-to-Drain PMOS)。
以NMOS為例,原理都是Gate關閉狀態,Source/Bulk的PN結本來是短接0偏的,當I/O端有大電壓時,則Drain/Bulk PN結雪崩擊穿,瞬間bulk有大電流與襯底電阻形成壓差導致Bulk/Source的PN正偏,所以這個MOS的寄生橫向NPN管進入放大區(發射結正偏,集電結反偏),所以呈現Snap-Back特性,起到保護作用。PMOS同理推導。
這個原理看起來簡單,但是設計的精髓(know-how)是什麼?怎麼觸發BJT?怎麼維持Snap-back?怎麼撐到HBM>2KV or 4KV?
如何觸發?必須有足夠大的襯底電流,所以後來發展到了現在普遍採用的多指交叉並聯結構(multi-finger)。但是這種結構主要技術問題是基區寬度增加,放大係數減小,所以Snap-back不容易開啟。而且隨著finger數量增多,會導致每個finger之間的均勻開啟變得很困難,這也是ESD設計的瓶頸所在。
如果要改變這種問題,大概有兩種做法(因為triger的是電壓,改善電壓要麼是電阻要麼是電流):1、利用SAB(SAlicide-Block)在I/O的Drain上形成一個高阻的non-Silicide區域,使得漏極方塊電阻增大,而使得ESD電流分布更均勻,從而提高洩放能力;2、增加一道P-ESD (Inner-Pickup imp,類似上面的接觸孔P+ ESD imp),在N+Drain下面打一個P+,降低Drain的雪崩擊穿電壓,更早有比較多的雪崩擊穿電流(詳見文獻論文: Inner Pickup on ESD of multi-finger NMOS.pdf)。
對於Snap-back的ESD有兩個小小的常識要跟大家分享一下:
1)NMOS我們通常都能看到比較好的Snap-back特性,但是實際上PMOS很難有snap-back特性,而且PMOS耐ESD的特性普遍比NMOS好,這個道理同HCI效應,主要是因為NMOS擊穿時候產生的是電子,遷移率很大,所以Isub很大容易使得Bulk/Source正嚮導通,但是PMOS就難咯。
2) Trigger電壓/Hold電壓: Trigger電壓當然就是之前將的snap-back的第一個拐點(Knee-point),寄生BJT的擊穿電壓,而且要介於BVCEO與BVCBO之間。而Hold電壓就是要維持Snap-back持續ON,但是又不能進入柵鎖(Latch-up)狀態,否則就進入二次擊穿(熱擊穿)而損壞了。還有個概念就是二次擊穿電流,就是進入Latch-up之後I^2*R熱量驟增導致矽融化了,而這個就是要限流,可以通過控制W/L,或者增加一個限流高阻, 最簡單最常用的方法是拉大Drain的距離/拉大SAB的距離(ESD rule的普遍做法)。
3、柵極耦合(Gate-Couple) ESD技術:我們剛剛講過,Multi-finger的ESD設計的瓶頸是開啟的均勻性,假設有10隻finger,而在ESD 放電發生時,這10 支finger 並不一定會同時導通(一般是因Breakdown 而導通),常見到只有2-3 支finger會先導通,這是因布局上無法使每finger的相對位置及拉線方向完全相同所致,這2~3 支finger 一導通,ESD電流便集中流向這2~3支的finger,而其它的finger 仍是保持關閉的,所以其ESD 防護能力等效於只有2~3 支finger的防護能力,而非10 支finger 的防護能力。這也就是為何組件尺寸已經做得很大,但ESD 防護能力並未如預期般地上升的主要原因,增打面積未能預期帶來ESD增強,怎麼辦?其實很簡單,就是要降低Vt1(Trigger電壓),我們通過柵極增加電壓的方式,讓襯底先開啟代替擊穿而提前導通產生襯底電流,這時候就能夠讓其他finger也一起開啟進入導通狀態,讓每個finger都來承受ESD電流,真正發揮大面積的ESD作用。
但是這種GCNMOS的ESD設計有個缺點是溝道開啟了產生了電流容易造成柵氧擊穿,所以他不見的是一種很好的ESD設計方案,而且有源區越小則柵壓的影響越大,而有源區越大則snap-back越難開啟,所以很難把握。
4、還有一種複雜的ESD保護電路: 可控矽晶閘管(SCR: Silicon Controlled Rectifier), 它就是我們之前講過的CMOS寄生的PNPN結構觸發產生Snap-Back並且Latch-up,通過ON/OFF實現對電路的保護,大家可以回顧一下,只要把上一篇裡面那些抑制LATCH-up的factor想法讓其發生就可以了,不過只能適用於Layout,不能適用於Process,否則Latch-up又要fail了。
最後,ESD的設計學問太深了,我這裡只是拋磚引玉給FAB的人科普一下了,基本上ESD的方案有如下幾種:電阻分壓、二極體、MOS、寄生BJT、SCR(PNPN structure)等幾種方法。而且ESD不僅和Design相關,更和FAB的process相關,而且學問太深了,我也不是很懂。
來源:電子工程專輯;Ths to @心由天地寬.
免責聲明:以上內容源於網絡,版權歸原作者所有,如涉及作品版權問題,請您告知我們將及時處理!
淨化工程資料可在 知識星球中下載
知識星球裡的文件均支持手機在線閱讀及電腦下載,現有內容:潔淨室技術、工程圖紙、標準規範、項目管理、工程照片、培訓體系、選型樣本、行業觀察等10個專業板塊,現有450個主題、5627份文件,涵蓋電子半導體、醫療、製藥、實驗室、食品、化妝品、鋰電池、太陽能電池、薄膜新材料、數據中心等行業領域,內容覆蓋項目規劃、設計、採購、施工、調試、運維、節能等應用場景。
我是宋松,潔淨工程聯盟&卓越工程師聯盟,主理人。因篇《機電/淨化工程 施工工藝,看這一篇就夠了~》,開啟「潔淨室資源整合」的徵程。從不遮掩,知識是包不住的,賣力分享,才能自我進步。這也許是行業內企業負責人、項目經理、技術負責人、銷售工程師、設計工程師、設備製造工程師、技術工程師陸續加入的原因。
知識星球VIP會員精品資源
1、15套機電工程施工組織設計
2、潔淨室設計專題資料
3、10套潔淨室培訓資料
4、潔淨室室系統介紹培訓課件
5、潔淨工程案例分享資料
6、潔淨區空調系統設計資料
7、潔淨室檢測與認證培訓課件
8、生物製藥行業潔淨室HVAC系統專業培訓
9、潔淨室系統詳解培訓課件
10、潔淨室檢測與調試培訓課件
11、潔淨區空調系統設計方案
12、潔淨區知識培訓課件
13、設計施工驗收規範專題資料
14、半導體建廠資料
15、培訓體系淨化空調培訓課件
16、TA全面水力平衡 暖通空調水力系統設計與應用手冊
17、工藝潔淨管道專題
18、機電系統運行維護操作手冊
19、機房空調、冷熱源基礎知識及培訓資料
20、FFU應用方式及相關的問題
21、FFU在電子超淨工程中應用
22、壓縮空氣管徑對照表
23、壓縮空氣系統驗證方案
24、半導體工廠(FAB)大宗氣體系統的設計
25、氮氣、氬氣管道安裝作業指導書
26、某半導體公司氮氣壓縮空氣工程設備管道安裝施工方案
27、超純水系統施工工藝
28、電子超純水系統工程設計方案
29、幹盤管與溼盤管的區別及選型注意事項
30、MAU+FFU+DCC系統
31、無塵車間高架地板詳細介紹
32、工業廠房幹蒸汽加溼設計分析
33、某半導體生產車間溫溼度控制系統設計
34、潔淨廠房高分子樹脂樓板施工工法
35、某電子廠房淨化空調工程改造設計方案
36、某電子廠房採用風冷熱泵機組作為潔淨空調冷熱源的設計思路
37、電子廠房高純氣體工藝與施工工程
38、電子特氣基礎知識
39、電子潔淨廠房通風空調設計施工圖紙
40、深圳某外資電子廠10萬級淨化車間全圖
41、電子廠房高純氣體工藝與施工工程
42、上海某廠微電子測封廢水處理工程方案
43、1k級潔淨室空調系統的調試分析
44、藥廠GMP工程潔淨空調施工調試檢測技術
45、淺談潔淨室工程淨化空調安裝與調試
46、潔淨室檢測與調試
47、潔淨手術室淨化空調系統調試
48、空調潔淨工程安裝調試手冊
49、潔淨空調系統培訓資料
50、實驗室改造裝飾裝修施工方案
51、江西某整理車間屏蔽實驗室施工方案
52、實驗室工程項目施工組織設計
53、GMP潔淨廠房空調淨化系統驗證方案
54、潔淨車間的微生物控制及檢測
55、潔淨車間概念及汙染防控
56、潔淨室淨化空調設計方案
57、潔淨壓縮空氣系統確認方案
58、空調系統原理分析及故障檢測
59、微生物限度檢查室空調淨化系統確認方案
60、無菌車間10萬級空氣淨化系統確認方案
61、藥廠潔淨室空調淨化系統涉及標準規範設計
62、潔淨空調系統培訓課件
63、製藥空調淨化系統基礎培訓
64、製藥新型頭孢系列產品項目施工組織設計
65、雲南某製藥廠潔淨廠房工程施工組織設計
66、無菌工藝操作與氣流組織確認
67、醫院製劑室生產車間設計思路
68、工藝管道伴熱設計
69、工藝管道培訓課件
70、潔淨工藝系統管道設計與安裝
71、衛生型工藝管道系統的設計和安裝
72、超純水處理輸送過程用的潔淨型PVC管道
73、什麼是直膨式空調機組?
74、中央空調主機原理
75、最新全國BIM政策匯總
76、項目採購計劃匯總表
77、招標、採購計劃模板
78、潔淨環境連續監控技術方案
79、10套醫院暖通施工圖紙
80、3萬平生產廠房潔淨空調系統設計施工圖(含動力站)
海量資源無限下載,最新乾貨每天持續更新中…
知識星球APP登錄操作指南
▼