SPSS教程-回歸分析

2021-01-10 LearningYard學苑

SPSS7

02:46來自LearningYard學苑

//SPSS

//Course

//回歸分析

SPSS

01 線形回歸分析 BREEZE

步驟一:在菜單欄中找到分析→回歸→線性,打開「線性回歸」對話框;

步驟二:將變量「財政收入」移入因變量框 ,「國內生產總值」移入自變量框;

步驟三:打開「統計」對話框,勾選「估計」和「模型擬合度」;

步驟四:打開「圖」對話框,將DEPENDENT作為y軸,*ZPRED為x軸作圖,並且勾選「直方圖」和「正態概率圖」 ,點擊繼續→確定。

Step 1

FindAnalysis→Regression→Linearinthemenubartoopenthe"LinearRegression"dialogbox;

Step 2

Movethevariable"fiscalrevenue"intothedependentvariableboxand"grossdomesticproduct"intotheindependentvariablebox;

Step 3

Openthe"Statistics"dialogbox,andcheck"Estimation"and"Modelfit";

Step 4

Openthe"Plot"dialogbox,useDEPENDENTasthey-axisand*ZPREDasthex-axistoplot,andcheck"Histogram"and"NormalProbabilityPlot",clickContinue→OK.

輸出窗口信息如下:

由模型摘要表可知,R=0.989,說明自變量與因變量之間的相關性很強。

由ANOVA(方差分析)表可知F統計量的觀測值為592.25,顯著性概率為0.000,即拒絕原假設,說明因變量和自變量的線性關係是非常顯著的,可建立線性模型。

由係數表可知回歸模型的常數項為-4993.281,自變量「國內生產總值」的回歸係數為0.197。因此,可以得出回歸方程:財政收入=-4993.281 + 0.197 × 國內生產總值,回歸係數的顯著性水平為0.000,明顯小於0.05,說明建立線性模型是恰當的。

02 非線性回歸分析 SUNSHINE

步驟一:在菜單欄中找到分析→回歸→非線性,打開「非線性回歸」對話框;

步驟二:將「營業收入」移入因變量框,在模型表達式中輸入相應的表達式;

步驟三:打開「參數」對話框,添加相應的參數值,點擊確定。

Step 1

Analysis→Regression→Nonlinearinthemenubarandopenthe"NonlinearRegression"dialogbox;

Step 2

Move"businessincome"intothedependentvariablebox,andenterthecorrespondingexpressioninthemodelexpression;

Step 3

Openthe"Parameters"dialogbox,addthecorrespondingparametervalues,andclickOK.

輸出窗口信息如下:

由迭代歷史記錄表可知,經過4次迭代後,模型達到收斂標準,找到了最佳解。得到營業收入關於兩種廣告費用的預測回歸模型為:

y = 86.531+1.089x1-0.667x2+0.724x1x2

由顯著性檢驗結果表可知,決定係數R2為0.941,擬合結果較好。

參考資料:百度百科,Google翻譯

本文由LearningYard學苑原創,部分文字、圖片來源於網絡,如有侵權,請聯繫刪除!

相關焦點

  • spss聚類分析功能怎麼使用?spss聚類分析教程
    spss 是一個非常好用的統計分析軟體,spss有一個聚類分析的功能哦,但是很多人不知道spss聚類分析功能怎麼使用?spss聚類分析是一個將case分析的數據的功能哦,下面小編就來告訴大家spss聚類分析使用教程吧!
  • spss 非線性回歸 - CSDN
    我們在做問卷分析時,由於因變量多為連續的線性變量,多半會採用線性回歸分析來研究變量之間的關係。此時,一般資料或者人口學變量中,就會含有很多分組或分類的變量,比如性別,學歷等等。 如果因變量在這些人口學變量上存在顯著的差異,那麼做回歸分析時候,就需要將這些存在顯著差異的人口學變量作為控制變量納入線性回歸分析。
  • 回歸分析spss步驟 - CSDN
    我們的教程中曾詳細講述了SPSS線性回歸分析,儘管線性回歸可以滿足絕大多數的數據分析,但是在現實情況中,並不能適用於所有的數據,當因變量和自變量之間的關係我們無法確定是否為線性或者其他非線性類型的模型關係時候,那麼我們就需要用到曲線回歸,來確定因變量和自變量之間到底最適合什麼樣的模型。
  • 數據分析難?教你spss使用的正確姿勢
    軟體不會用,各種數據傻傻搞不清楚,尤其是怎麼分析數據更是暈頭轉向,當然跟著靠譜的老師學習,一邊看實操一邊自己做,這樣肯定事半功倍。本次我們整理出了spss的數據分析教程,都是有實操的,只要跟著做,絕對沒問題!
  • spss 方法 線性回歸專題及常見問題 - CSDN
    本文收集整理關於spss多元線性回歸結果解讀的相關議題,使用內容導航快速到達。內容導航:Q1:請高手幫忙分析下SPSS的多元線性回歸結果吧~急啊~~~你的回歸方法是直接進入法擬合優度R方等於0.678,表示自變量可以解釋因變量的67.8%變化,說明擬合優度還可以。
  • spss多元線性回歸專題及常見問題 - CSDN
    本文收集整理關於spss多元線性回歸結果解讀的相關議題,使用內容導航快速到達。內容導航:Q1:請高手幫忙分析下SPSS的多元線性回歸結果吧~急啊~~~你的回歸方法是直接進入法擬合優度R方等於0.678,表示自變量可以解釋因變量的67.8%變化,說明擬合優度還可以。
  • 學會spss就能找到數據分析工作嗎
    大學課堂上學習了spss,老師也講了很多知識,但是現在準備畢業了,我做的實習工作就是用業內的數據進行最新的行業研究。現在真正需要用到spss進行分析了,我卻看不懂老闆給的數據和分析要求,難道這就是理論與實際的脫節嗎?
  • spss多變量回歸分析 - CSDN
    點擊學習全部醫學統計學與SPSS教程SPSS 教程36 啞變量設置分析‍啞變量(DummyVariable),也叫虛擬變量,是解決回歸分析分類自變量的重要舉措。回歸分析的棘手問題--非線性關係1回歸分析要求自變量與應變量存在著線性關係回歸分析主要探討自變量x與研究結局變量y的關係,無論線性回歸,logistic回歸或者
  • spss怎麼分析因子?spss因子分析法詳細步驟
    spss不僅可以分析主成分 ,還可以分析因子哦,但是很多朋友不知道spss怎麼分析因子?小編下面有一個spss因子分析法詳細步驟哦,只要大家按照spss因子分析法詳細步驟一步步操作就知道spss怎麼分析因子了哦,下面就和小編一起來看看吧!
  • spss主成分怎麼進行分析?spss主成分分析法步驟
    spss 這款軟體功能非常多哦,還可以分析主成分哦,但是很多朋友不知道spss主成分怎麼進行分析?小編下面準備了spss主成分分析法詳細步驟,大家安裝 詳細步驟一步步操作就知道spss主成分怎麼進行分析?
  • SPSS因子分析案例
    因子分析在各行各業的應用非常廣泛,尤其是科研論文中因子分析更是頻頻出現。【二、簡單實例】現在有 12 個地區的 5 個經濟指標調查數據(總人口、學校校齡、總僱員、專業服務、中等房價),為對這 12 個地區進行綜合評價,請確定出這 12 個地區的綜合評價指標。【三、解決方案】1、spss因子分析同一指標在不同地區是不同的,用單一某一個指標難以對12個地區進行準確的評價,單一指標智能反映地區的某一方面。
  • 多元線性回歸預測spss - CSDN
    回歸一直是個很重要的主題。因為在數據分析的領域裡邊,模型重要的也是主要的作用包括兩個方面,一是發現,一是預測。而很多時候我們就要通過回歸來進行預測。關於回歸的知識點也許不一定比參數檢驗,非參數檢驗多,但是複雜度卻絕對在其上。回歸主要包括線性回歸,非線性回歸以及分類回歸。本文主要討論多元線性回歸(包括一般多元回歸,含有虛擬變量的多元回歸,以及一點廣義差分的知識)。
  • spss協方差分析
    什麼是協方差分析?協方差分析又稱「共變量分析」,是方差分析的引申和擴大。基本原理是將線性回歸與方差分析結合起來,調整各組平均數和 F 檢驗的實驗誤差項,檢驗兩個或多個調整平均數有無顯著差異,以便控制在實驗中影響實驗效應(因變量)而無法人為控制的協變量(與因變量有密切回歸關係的變量)在方差分析中的影響。好吧,聽不懂。簡單舉個例子來說:有一項研究,想知道男生和女生在跑步後的心率是否有差異。
  • SPSS實操教程——單因素方差分析
    這個時候需要使用方差分析。那怎麼做呢?做分析之前需要思考幾個問題?是不是單因素?是不是獨立?各組應變量是不是符合正態分布?各組應變量是不是方差齊性?好,他這個研究是單因素的,只是分析了藥物一個因素,包括三種不同的藥物,分為三組。而且各組之間也是相互獨立的。
  • 基本數據統計分析--spss
    在數據分析工作中,描述性統計分析是我們日常使用率最高的,主要的基本統計分析維度包括但不限於均值、 中位數、眾數、方差、百分位、頻數、峰度、偏度、探索分析、交叉聯列表分析、多選項分析、基本統計報表製作等。而這些功能操作在spss中是可以直接使用的。當然我們也需要理解相關定義。
  • 數據分析之主成分分析,spss主成分分析實例
    一、主成分分析概要主成分分析,在進行有多個指標的綜合評定時,客觀全面的綜合評價結果非常重要,然而往往多個指標之間通常存在信息不統一或者重複等眾多因素,各指標的權重往往很難確認。主成分分析方法能夠解決以上問題,主成分分析法是一種降維的統計方法,是考察多個變量間相關性一種多元統計方法。二、spss主成分分析操作流程導入數據。
  • 數據分析基礎相關性分析,SPSS實操
    一般根據研究的目的不同、或變量的類型不同,採用不同的相關分析方法。 常用的相關分析方法:二元定距變量的相關分析、二元定序變量的相關分析、偏相關分析和距離相關分析等。二、SPSS相關性分析操作spss相關性分析操作流程
  • SPSS分析技術:線性回歸分析
    相關分析請點擊回顧:SPSS分析技術:Pearson相關、Spearman相關及Kendall相關;SPSS分析技術:偏相關分析;SPSS分析技術:低測度數據的相關性分析;回歸分析就是分析變量之間隱藏的內在規律,並建立變量之間函數變化關係的一種分析方法,回歸分析的目標就是建立由一個因變量和若干自變量構成的回歸方程式
  • 「spss數據分析系列」t檢驗
    一、t統計量及t檢驗本人介紹spss數據分析中的t檢驗,我們平時分析數據時經常對比均值,其中兩分類的均值對比採用的t檢驗,這裡強調一下的是兩分類的對比,其他還有獨立樣本t檢驗,配對t檢驗,我們在下面spss軟體部分再做說明
  • SPSS方法|嶺回歸分析
    :嶺回歸分析是在構建多重線性回歸模型時, 對基於「最小二乘原理」推導出的估計回歸係數的計算公式作一下校正,使回歸係數更穩定。當自變量之間存在較強的多重共線性時,求得的多重線性回歸模型很不穩定; 尤其是某些自變量回歸係數的正負號與實際問題的專業背景不吻合時,嶺回歸分析可以很好地解決這一問題。