從哲學上來看,矛盾是無處不存在的,即便以確定無疑著稱的數學也不例外。數學中有大大小小的許多矛盾,例如正與負、加與減、微分與積分、有理數與無理數、實數與虛數等等。
在整個數學發展過程中,還有許多深刻的矛盾,例如有窮與無窮、連續與離散、存在與構造、邏輯與直觀、具體對象與抽象對象、概念與計算等等。
在數學史上,貫穿著矛盾的鬥爭與解決。當矛盾激化到涉及整個數學的基礎時,就會產生數學危機。而危機的解決,往往能給數學帶來新的內容、新的發展,甚至引起革命性的變革。
數學的發展就經歷過三次關於基礎理論的危機。
1、起因:在公元前580~568年之間的古希臘,數學家畢達哥拉斯建立了畢達哥拉斯學派。這個學派集宗教、科學和哲學於一體,該學派人數固定,知識保密,所有發明創造都歸於學派領袖。
畢達哥拉斯
當時人們對有理數的認識還很有限,對於無理數的概念更是一無所知,畢達哥拉斯學派所說的數,原來是指整數,他們不把分數看成一種數,而僅看作兩個整數之比,他們錯誤地認為,宇宙間的一切現象都歸結為整數或整數之比,即「萬物皆數」。
該學派的成員希伯索斯根據勾股定理(西方稱為畢達哥拉斯定理)通過邏輯推理發現,邊長為l的正方形的對角線長度既不是整數,也不是整數的比所能表示。希伯索斯的發現被認為是「荒謬」和違反常識的事。
它不僅嚴重地違背了畢達哥拉斯學派的信條,也衝擊了當時希臘人的傳統見解。使當時希臘數學家們深感不安,相傳希伯索斯因這一發現被投入海中淹死,這就是第一次數學危機。
2、解決:這場危機通過在幾何學中引進不可通約量概念而得到解決。兩個幾何線段,如果存在一個第三線段能同時量盡它們,就稱這兩個線段是可通約的,否則稱為不可通約的。
正方形的一邊與對角線,就不存在能同時量盡它們的第三線段,因此它們是不可通約的。很顯然,只要承認不可通約量的存在使幾何量不再受整數的限制,所謂的數學危機也就不復存在了。
3、 意義:不可通約量的研究使幾何學更加完備,其成果被歐幾裡得所吸收,部分被收人他的《幾何原本》中。
1、起因:十七世紀,微積分的形成給數學界帶來革命性變化,在各個科學領域得到廣泛應用,但微積分在理論上存在矛盾的地方。無窮小量是微積分的基礎概念之一。
牛頓
微積分的主要創始人牛頓在一些典型的推導過程中,第一步用了無窮小量作分母進行除法,當然無窮小量不能為零;第二步牛頓又把無窮小量看作零,去掉那些包含它的項,從而得到所要的公式,在力學和幾何學的應用證明了這些公式是正確的,但它的數學推導過程卻在邏輯上自相矛盾。焦點是:無窮小量是零還是非零?如果是零,怎麼能用它做除數?如果不是零,又怎麼能把包含著無窮小量的那些項去掉呢?
2、解決:直到19世紀,柯西詳細而有系統地發展了極限理論。柯西認為把無窮小量作為確定的量,即使是零,都說不過去,它會與極限的定義發生矛盾。無窮小量應該是要怎樣小就怎樣小的量,因此本質上它是變量,而且是以零為極限的量,至此柯西澄清了前人的無窮小的概念,而且把無窮小量從形上學的束縛中解放出來,第二次數學危機基本解決。
3、意義:第二次數學危機的解決使微積分更完善。
1、起因:十九世紀下半葉,康託爾創立了著名的集合論,在集合論剛產生時,曾遭到許多人的猛烈攻擊。但不久這一開創性成果就為廣大數學家所接受了,並且獲得廣泛而高度的讚譽。數學家們發現,從自然數與康託爾集合論出發可建立起整個數學大廈。因而集合論成為現代數學的基石。
康託爾
可是,好景不長。1903年,一個震驚數學界的消息傳出:集合論是有漏洞的!這就是英國數學家羅素提出的著名的羅素悖論。
羅素構造了一個集合S:S由一切不是自身元素的集合所組成。然後羅素問:S是否屬於S呢?根據排中律,一個元素或者屬於某個集合,或者不屬於某個集合。因此,對於一個給定的集合,問是否屬於它自己是有意義的。但對這個看似合理的問題的回答卻會陷入兩難境地。如果S屬於S,根據S的定義,S就不屬於S;反之,如果S不屬於S,同樣根據定義,S就屬於S。無論如何都是矛盾的。因而形成了數學史上更大的危機。
2、解決:數學家們就開始為這場危機尋找解決的辦法,其中之一是把集合論建立在一組公理之上,以迴避悖論。首先進行這個工作的是德國數學家策梅羅,他提出七條公理,建立了一種不會產生悖論的集合論,又經過德國的另一位數學家弗芝克爾的改進,形成了一個無矛盾的集合論公理系統。即所謂ZF公理系統。這場數學危機到此緩和下來。數學危機給數學發展帶來了新的動力。
3、意義:在這場危機中集合論得到較快的發展,數學基礎的進步更快,數理邏輯也更加成熟。