研究揭示真菌大環內酯類抗生素生物合成中的自抗性機制
作者:
小柯機器人發布時間:2020/12/16 16:14:16
中國醫學科學院胡友財等研究人員揭示真菌大環內酯類抗生素生物合成中的自抗性機制。相關論文於2020年12月14日在線發表在《德國應用化學》雜誌上。
研究人員報導了一種大環內酯類抗生素A26771B(1)自抗性的獨特策略,該策略通過闡明其在Penicillium egyptiacum中的生物合成途徑而確定。高度還原的聚酮化合物合酶和反式硫酯酶生成大環內酯骨架,P450和醯基轉移酶分別催化羥基化和琥珀醯化反應,從而形成前藥berkeleylactone E(2)。然後,由分泌的黃素依賴性氧化酶引起的細胞外氧化激活形成1,而由短鏈還原酶進行的細胞內還原失活重新形成2,從而形成氧化還原循環。
這項工作說明了氧化還原介導的一種獨特真菌抗生素耐藥機制,並有助於理解抗生素的生物合成和耐藥性。
據介紹,許多生物活性天然產物的微生物生產者都採用自我抗性基因來避免自我傷害。
附:英文原文
Title: Self‐Resistance in the Biosynthesis of Fungal Macrolides Involving Cycles of Extracellular Oxidative Activation and Intracellular Reductive Inactivation
Author: Youcai Hu, Yalong Zhang, Jian Bai, Le Zhang, Chen Zhang, Bingyu Liu
Issue&Volume: 14 December 2020
Abstract: Self‐resistance genes are employed by many microbial producers of bioactive natural products to avoid self‐harm. Here, we describe a unique strategy for self‐resistance toward a macrolide antibiotic, A26771B ( 1 ), identified by elucidating its biosynthetic pathway in the fungus Penicillium egyptiacum . A highly reducing polyketide synthase and a trans ‐acting thioesterase generate the macrolide backbone, and a P450 and an acyltransferase respectively catalyze hydroxylation and succinylation to form the prodrug berkeleylactone E ( 2 ). Then, extracellular oxidative activation by a secreted flavin‐dependent oxidase forms 1 , while intracellular reductive inactivation by a short‐chain reductase reforms 2 , forming a redox cycle. Our work illustrates a unique redox‐mediated resistance mechanism for fungal antibiotics and contributes to the understanding of antibiotic biosynthesis and resistance.
DOI: 10.1002/anie.202015442
Source: https://onlinelibrary.wiley.com/doi/10.1002/anie.202015442